MADS-box polynucleotides and polypeptides for increasing abiotic stress tolerance, yield, biomass, growth rate, and/or vigor in a plant (2025)

This application is a division of U.S. patent application Ser. No. 14/554,076 filed on Nov. 26, 2014, which is a division of U.S. patent application Ser. No. 13/387,760 filed on Jan. 30, 2012, now U.S. Pat. No. 8,937,215, which is a National Phase of PCT Patent Application No. PCT/IB2010/053501 having International Filing Date of Aug. 2, 2010, which claims the benefit of priority of U.S. Provisional Patent Application Nos. 61/293,743 filed on Jan. 11, 2010 and 61/231,040 filed on Aug. 4, 2009. The contents of the above applications are all incorporated herein by reference.

The ASCII file, entitled 67795SequenceListing.txt, created on Nov. 12, 2016, comprising 15,427,313 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.

The present invention, in some embodiments thereof, relates to isolated polypeptides and polynucleotides, nucleic acid constructs comprising same, transgenic plants expressing same and methods of using same for increasing abiotic stress tolerance (ABST), water use efficiency (WUE), yield (e.g., grain quantity and/or quality), biomass, oil content, growth rate, vigor, nitrogen use efficiency (NUE) and/or fertilizer use efficiency (FUE) of a plant.

The ever-increasing world population and the decreasing availability in arable land for agriculture affect the yield of plants and plant-related products. The global shortage of water supply, desertification, abiotic stress (ABS) conditions (e.g., salinity, drought, flood, suboptimal temperature and toxic chemical pollution), and/or limited nitrogen and fertilizer sources cause substantial damage to agricultural plants such as major alterations in the plant metabolism, cell death, and decreases in plant growth and crop productivity.

Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage, water supply shortage and increased susceptibility to various diseases.

Salinity, high salt levels, affects one in five hectares of irrigated land. None of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit, which leads to osmotic stress (similar to drought stress), and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population.

Suboptimal temperatures affect plant growth and development through the whole plant life cycle. Thus, low temperatures reduce germination rate and high temperatures result in leaf necrosis. In addition, mature plants that are exposed to excess heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in novel ways. Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize. Excessive light conditions, which occur under clear atmospheric conditions subsequent to cold late summer/autumn night's, can lead to photoinhibition of photosynthesis (disruption of photosynthesis).

Suboptimal nutrient (macro and micro nutrient) affect plant growth and development through the whole plant life cycle. One of the essential macronutrients for the plant is Nitrogen. Nitrogen is responsible for biosynthesis of amino acids and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like. Nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. Additional important macronutrients are Phosphorous (P) and Potassium (K), which have a direct correlation to yield and general plant tolerance.

Yield is affected by various factors, such as, the number and size of the plant organs, plant architecture (for example, the number of branches), grains set length, number of filled grains, vigor (e.g. seedling), growth rate, root development, utilization of water, nutrients (e.g., nitrogen) and fertilizers, and stress tolerance.

Crops such as, corn, rice, wheat, canola and soybean account for over half of total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds or forage. Seeds are also a source of sugars, protein and oils and metabolites used in industrial processes. The ability to increase plant yield, whether through increase dry matter accumulation rate, modifying cellulose or lignin composition, increase stalk strength, enlarge meristem size, change of plant branching pattern, erectness of leaves, increase in fertilization efficiency, enhanced seed dry matter accumulation rate, modification of seed development, enhanced seed filling or by increasing the content of oil, starch or protein in the seeds would have many applications in agricultural and non-agricultural uses such as in the biotechnological production of pharmaceuticals, antibodies or vaccines.

Studies have shown that plant adaptations to adverse environmental conditions are complex genetic traits with polygenic nature. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, selective breeding is tedious, time consuming and has an unpredictable outcome. Furthermore, limited germplasm resources for yield improvement and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Advances in genetic engineering have allowed mankind to modify the germplasm of plants by expression of genes-of-interest in plants. Such a technology has the capacity to generate crops or plants with improved economic, agronomic or horticultural traits.

WO publication No. 2009/013750 discloses genes, constructs and methods of increasing abiotic stress tolerance, biomass and/or yield in plants generated thereby.

WO publication No. 2008/122980 discloses genes constructs and methods for increasing oil content, growth rate and biomass of plants.

WO publication No. 2008/075364 discloses polynucleotides involved in plant fiber development and methods of using same.

WO publication No. 2007/049275 discloses isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same for increasing plant abiotic stress tolerance and biomass.

WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.

WO publication No. 2005/121364 discloses polynucleotides and polypeptides involved in plant fiber development and methods of using same for improving fiber quality, yield and/or biomass of a fiber producing plant.

WO publication No. 2007/020638 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.

WO publication No. 2009/083958 discloses methods of increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plant and plants generated thereby.

WO publication No. 2010/020941 discloses methods of increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants and plants generated thereby.

According to an aspect of some embodiments of the present invention there is provided a method of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO:1-473, 783-1272, 1277-4139, 4142, 4146-5508 or 5509, thereby increasing the abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1274, 1275, 1277-4142, and 4146-5509, thereby increasing the abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO:474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, 7548-8735 or 8736, thereby increasing the abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs:474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736, thereby increasing the abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO:1-473, 783-1272, 1277-4139, 4142, 4146-5508 or 5509, wherein the nucleic acid sequence is capable of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1274, 1275, 1277-4142, and 4146-5509.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO:474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, 7548-8735 or 8736, wherein the amino acid sequence is capable of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs:474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736.

According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.

According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO:474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, 7548-8735 or 8736, wherein the amino acid sequence is capable of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs:474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736.

According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.

According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polypeptide of some embodiments of the invention.

According to some embodiments of the invention, the nucleic acid sequence is as set forth in SEQ ID NOs:1-473, 783-1272, 1274, 1275, 1277-4142, 4146-5508 or 5509.

According to some embodiments of the invention, the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1274, 1275, 1277-4142, and 4146-5509.

According to some embodiments of the invention, the nucleic acid sequence encodes an amino acid sequence at least 80% homologous to SEQ ID NO:474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, 7548-8735 or 8736.

According to some embodiments of the invention, the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs:474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736.

According to some embodiments of the invention, the plant cell forms part of a plant.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.

According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.

According to some embodiments of the invention, the yield comprises seed yield or oil yield.

According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.

Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.

Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.

For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.

In the drawings:

FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:8741) and the GUSintron (pQYN_6669) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.

FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:8741) (pQFN) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.

FIGS. 3A-3F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal (FIGS. 3A-3B), osmotic stress (15% PEG; FIGS. 3C-3D) or nitrogen-limiting (FIGS. 3E-3F) conditions. The different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting. FIG. 3A—An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions. FIG. 3B—An image of root analysis of the plants shown in FIG. 3A in which the lengths of the roots measured are represented by arrows. FIG. 3C—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions. FIG. 3D—An image of root analysis of the plants shown in FIG. 3C in which the lengths of the roots measured are represented by arrows. FIG. 3E—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions. FIG. 3F—An image of root analysis of the plants shown in FIG. 3E in which the lengths of the roots measured are represented by arrows.

FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa_RP) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); The isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS of the vector.

The present invention, in some embodiments thereof, relates to isolated polypeptides and polynucleotides, nucleic acid constructs comprising the isolated polypeptides, transgenic plants expressing same and methods of using same for increasing abiotic stress tolerance (ABST), water use efficiency (WUE), yield (e.g., grain quantity and/or quality), biomass, oil content, growth rate, vigor, nitrogen use efficiency (NUE) and/or fertilizer use efficiency (FUE) of a plant.

Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.

The present inventors have identified novel polypeptides and polynucleotides which can be used to increase abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

Thus, as shown in the Examples section which follows, the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance abiotic stress tolerance, yield (e.g., seed yield, oil yield, oil content), biomass, growth rate, vigor, and/or nitrogen use efficiency of a plant. Genes which affect the trait-of-interest were identified based on expression profiles of genes of several Arabidopsis ecotypes and tissues, Tomato, Sorghum, Maize and Barley varieties (Examples 1-8), homology with genes known to affect the trait-of-interest and using digital expression profile in specific tissues and conditions (Tables 1-43, Examples 1-8; polynucleotides SEQ ID NOs:1-274; polypeptides SEQ ID NOs:474-731). Homologous polypeptides and polynucleotides having the same function were also identified (Table 44, Example 10; polynucleotides SEQ ID NOs:783-5509; polypeptides SEQ ID NOs:5510-8736). Transgenic plants over-expressing the identified polynucleotides and polypeptides (Table 45, Example 11) were found to exhibit increased abiotic stress tolerance (e.g., under osmotic stress or salinity stress), nitrogen use efficiency (e.g., root performance), biomass (under stress conditions or normal/standard conditions), growth rate (under stress conditions or normal/standard conditions), and yield (Tables 46-73); Examples 14-15). Altogether, these results suggest the use of the novel polynucleotides and polypeptides of the invention for increasing abiotic stress tolerance, yield (including oil yield, seed yield and oil content), growth rate, biomass, vigor and/or nitrogen use efficiency of a plant.

Thus, according to an aspect of some embodiments of the invention, there is provided method of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO:1-473, 783-1272, 1277-4139, 4142, 4146-5508 or 5509, thereby increasing the abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of the plant.

The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation. The implications of abiotic stress are discussed in the Background section.

The phrase “abiotic stress tolerance” as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.

Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291). The Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter. In Mesembryanthemum crystallinum (ice plant), Patharker and Cushman have shown that a calcium-dependent protein kinase (McCDPK1) is induced by exposure to both drought and salt stresses (Patharker and Cushman (2000) Plant J. 24: 679-691). The stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress. Similarly, Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).

Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270). In addition to the induction of cold-acclimation proteins, strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production. In another example increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.

It will be appreciated that some pathways involved in resistance to one stress (as described above), will also be involved in resistance to other stresses, regulated by the same or homologous genes. Of course, the overall resistance pathways are related, not identical, and therefore not all genes controlling resistance to one stress will control resistance to the other stresses. Nonetheless, if a gene conditions resistance to one of these stresses, it would be apparent to one skilled in the art to test for resistance to these related stresses. Methods of assessing stress resistance are further provided in the Examples section which follows.

As used herein the phrase “water use efficiency (WUE)” refers to the level of organic matter produced per unit of water consumed by the plant, i.e., the dry weight of a plant in relation to the plant's water use, e.g., the biomass produced per unit transpiration.

As used herein the phrase “fertilizer use efficiency” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per fertilizer unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.

As used herein the phrase “fertilizer-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.

As used herein the phrase “nitrogen use efficiency (NUE)” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant.

As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.

Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field. Thus, the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass. In addition, the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield. It should be noted that improved ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.

As used herein the phrase “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.

It should be noted that a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor; growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g. seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].

As used herein the phrase “seed yield” refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed. Hence seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content. Hence increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.

The term “seed” (also referred to as “grain” or “kernel”) as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.

The phrase “oil content” as used herein refers to the amount of lipids in a given plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).

It should be noted that oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.

In one embodiment, increase in oil content of the plant can be achieved by increasing the size/mass of a plant's tissue(s) which comprise oil per growth period. Thus, increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.

As used herein the phrase “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.

As used herein the phrase “growth rate” refers to the increase in plant organ/tissue size per time (can be measured in cm2 per day).

As used herein the phrase “plant vigor” refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand. Improving early vigor is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigor. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigor into plants would be of great importance in agriculture. For example, poor early vigor has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.

It should be noted that a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.

As used herein, the phrase “non-stress conditions” refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again). Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.

The term “fiber” is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Hence, the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).

Example of fiber producing plants, include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).

As used herein the phrase “fiber quality” refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow). Examples of such parameters, include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow.

Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.

As used herein the phrase “fiber yield” refers to the amount or quantity of fibers produced from the fiber producing plant.

As used herein the term “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant as compared to a native plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention, e.g., a non-transformed plant of the same species which is grown under the same growth conditions).

The phrase “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.

As used herein “expressing” refers to expression at the mRNA and optionally polypeptide level.

As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.

The term “endogenous” as used herein refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof.

According to some embodiments of the invention the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1277-4139, 4142, and 4146-5509.

According to some embodiments of the invention, the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.

Identity (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.

According to some embodiments of the invention the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1277-4139, 4142, and 4146-5509.

According to some embodiments of the invention the exogenous polynucleotide is set forth by SEQ ID NO: 1-473, 783-1272, 1274, 1275, 1277-4142, 4146-5508 or 5509.

As used herein the term “polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).

The term “isolated” refers to at least partially separated from the natural environment e.g., from a plant cell.

As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.

As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.

As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.

According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, and 7548-8736. Homology (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastP or TBLASTN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters, when starting from a polypeptide sequence; or the tBLASTX algorithm (available via the NCBI) such as by using default parameters, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.

Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship.

One option to identify orthologues in monocot plant species is by performing a reciprocal blast search. This may be done by a first blast involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The blast results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second blast) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second blasts are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first blast identifies in the second blast the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor-joining tree (Hypertext Transfer Protocol://en (dot) wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.

According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, 7548-8735 or 8736.

Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.

The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU=n=1 N [(Xn−Yn)/Yn]2/N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).

One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization Tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (Hypertext Transfer Protocol://World Wide Web (dot) kazusa (dot) or (dot) jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.

By using the above Tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.

The naturally-occurring encoding nucleotide sequence may already, in advance of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.

According to some embodiments of the invention, the exogenous polynucleotide is a non-coding RNA.

As used herein the phrase ‘non-coding RNA” refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide). Examples of such non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).

Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ D NOs:217, 273, 274, and 473.

Thus, the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-473, 783-1272, 1277-4139, 4142, and 4146-5509.

According to some embodiments of the invention the nucleic acid sequence is capable of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

According to some embodiments of the invention the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-473, 783-1272, 1274, 1275, 1277-4142, and 4146-5509.

According to some embodiments of the invention the isolated polynucleotide is set forth by SEQ ID NO: 1-473, 783-1272, 1274, 1275, 1277-4142, 4146-5508 or 5509.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, and 7548-8736.

According to some embodiments of the invention the amino acid sequence is capable of increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736.

The invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 474-562, 564-620, 622-750, 752-782, 5510-5939, 5946-6856, 6858-7540, 7543, 7544, and 7548-8736.

According to some embodiments of the invention, the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, and 7548-8736.

According to some embodiments of the invention, the polypeptide is set forth by SEQ ID NO: 474-782, 5510-5940, 5942, 5943, 5945-6856, 6858-7544, 7548-8735 or 8736.

According to some embodiments of the invention, there is provided a nucleic acid construct comprising the isolated polynucleotide of the invention, and a promoter for directing transcription of the nucleic acid sequence of the isolated polynucleotide in a host cell.

The invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.

The term “‘plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalypfus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp, Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barely, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.

According to some embodiments of the invention, the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.

According to some embodiments of the invention, there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.

According to some embodiments of the invention, expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.

According to some embodiments of the invention, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.

As mentioned, the nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of the invention.

According to some embodiments of the invention, the isolated polynucleotide is operably linked to the promoter sequence.

A coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.

As used herein, the term “promoter” refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.

Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.

Suitable constitutive promoters include, for example, CaMV 35S promoter (SEQ ID NO:8739; Odell et al., Nature 313:810-812, 1985); Arabidopsis At6669 promoter (SEQ ID NO:8738; see PCT Publication No. WO04081173A2); Arabidopsis new At6669 promoter (SEQ ID NO:8741); maize Ubi 1 (Christensen et al., Plant Sol. Biol. 18:675-689, 1992); rice actin (McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al., Theor. Appl. Genet. 81:581-588, 1991); CaMV 19S (Nilsson et al., Physiol. Plant 100:456-462, 1997); GOS2 (de Pater et al, Plant J November; 2(6):837-44, 1992); ubiquitin (Christensen et al, Plant Mol. Biol. 18: 675-689, 1992); Rice cyclophilin (Bucholz et al, Plant Mol Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992); Actin 2 (An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608,144; 5,604,121; 5,569,597: 5,466,785; 5,399,680; 5,268,463; and 5,608,142.

Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [such as described, for example, by Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993], seed-preferred promoters [e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et. al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO:8740), from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), Brazil Nut albumin (Pearson' et al., Plant Mol. Biol. 18: 235-245, 1992), legumin (Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221: 43-47, 1987), Zein (Matzke et al Plant Mol Biol, 143).323-32 1990), napA (Stalberg, et al, Planta 199: 515-519, 1996), Wheat SPA (Albani etal, Plant Cell, 9: 171-184, 1997), sunflower oleosin (Cummins, etal., Plant Mol. Biol. 19: 873-876, 1992)], endosperm specific promoters [e.g., wheat LMW and HMW, glutenin-1 (Mol Gen Genet 216:81-90, 1989; NAR 17:461-2), wheat a, b and g gliadins (EMBO3:1409-15, 1984), Barley ltrl promoter, barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet 250:750-60, 1996), Barley DOF (Mena et al, The Plant Journal, 116(1): 53-62, 1998), Biz2 (EP99106056.7), Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice-globulin Glb-1 (Wu et al, Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorgum gamma-kafirin (PMB 32:1029-35, 1996)], embryo specific promoters [e.g., rice OSH1 (Sato et al, Proc. Nati. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma of al, Plant Mol. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen Genet. 217:240-245; 1989), apetala-3], and root promoters such as the ROOTP promoter [SEQ ID NO: 8742].

Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et. al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et. al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et. al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).

The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication. According to some embodiments of the invention, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.

The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.

There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).

The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:

(i) Agrobacterium-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S. and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.

(ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.

The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.

There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.

Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.

Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.

Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.

According to some embodiments of the invention, the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.

Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.

Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.

According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).

Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.

Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.

When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.

In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.

In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.

In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.

In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.

The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.

Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998; Maramorosh and Koprowski, eds. “Methods in Virology” 7 vols, Academic Press, New York 1967-1984; Hill, S. A. “Methods in Plant Virology”, Blackwell, Oxford, 1984; Walkey, D. G. A. “Applied Plant Virology”, Wiley, New York, 1985; and Kado and Agrawa, eds. “Principles and Techniques in Plant Virology”, Van Nostrand-Reinhold, New York.

In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.

A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.

Since processes which increase abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency.

Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can than be regenerated into a mature plant using the methods described hereinabove.

Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic messenger RNA, the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.

The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.

Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield and/or vigor traits, using conventional plant breeding techniques.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.

Non-limiting examples of abiotic stress conditions include, salinity, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.

Thus, the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs and/or polypeptide(s) of the invention. Once expressed within the plant cell or the entire plant, the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.

Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example, Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.

The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.

Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).

The polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.

Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.

The effect of the transgene (the exogenous polynucleotide encoding the polypeptide) on abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.

Abiotic Stress Tolerance—

Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.

Salinity Tolerance Assay—

Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York, 2002, and reference therein).

For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.

Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.

Osmotic Tolerance Test—

Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.

Drought Tolerance Assay/Osmoticum Assay—

Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.

Conversely, soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.

Cold Stress Tolerance—

To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.

Heat Stress Tolerance—

Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.

Water Use Efficiency—

can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:
RWC=[(FW−DW)/(TW−DW)]×100  Formula I:

Fertilizer Use Efficiency—

To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.

Nitrogen Use Efficiency—

To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.

Nitrogen Use Efficiency Assay Using Plantlets—

The assay is done according to Yanagisawa-S. et al. with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5×MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually, 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.

Nitrogen Determination—

The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3(Purcell and King 1996 Argon. J. 88:111-113, the modified Cdmediated reduction of NO3to NO2 (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.

Germination Tests—

Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).

Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C. instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).

The effect of the transgene on plant's vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.

Plant Vigor—

The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.

Growth Rate—

The growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.

Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm2 per day of leaf area).

Relative Growth Area

can be calculated using Formula II.
Relative growth rate area=Regression coefficient of area along time course.  Formula II:

Seed Yield—

Evaluation of the seed yield per plant can be done by measuring the amount (weight or size) or quantity (i.e., number) of dry seeds produced and harvested from 8-16 plants and divided by the number of plants.

For example, the total seeds from 8-16 plants can be collected, weighted using e.g., an analytical balance and the total weight can be divided by the number of plants. Seed yield per growing area can be calculated in the same manner while taking into account the growing area given to a single plant. Increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants capable of growing in a given area.

In addition, seed yield can be determined via the weight of 1000 seeds. The weight of 1000 seeds can be determined as follows: seeds are scattered on a glass tray and a picture is taken. Each sample is weighted and then using the digital analysis, the number of seeds in each sample is calculated.

The 1000 seeds weight can be calculated using formula III:
1000 Seed Weight=number of seed in sample/sample weight×1000.  Formula III:

The Harvest Index can be calculated using Formula IV.
Harvest Index=Average seed yield per plant/Average dry weight.  Formula IV:

Grain Protein Concentration—

Grain protein content (g grain protein m−2) is estimated as the product of the mass of grain N (g grain N m−2) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg−1 grain).

Fiber Length—

Fiber length can be measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point (Hypertext Transfer Protocol://World Wide Web (dot) cottoninc (dot) com/ClassificationofCotton/?Pg=4#Length).

According to some embodiments of the invention, increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.

As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Oil Content—

The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F. and Earle F R., 1963, Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)]; the Near Infrared (NI) Spectroscopy, which utilizes the absorption of near infrared energy (1100-2500 nm) by the sample; and a method described in WO/2001/023884, which is based on extracting oil a solvent, evaporating the solvent in a gas stream which forms oil particles, and directing a light into the gas stream and oil particles which forms a detectable reflected light.

Thus, the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).

Any of the transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.

The transgenic plants described hereinabove, which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).

The plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients. The specific ingredients included in a product are determined according to the intended use. Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material. Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.

According to some embodiments of the invention, the oil comprises a seed oil.

According to some embodiments of the invention, the oil comprises a vegetative portion oil.

According to some embodiments of the invention, the plant cell forms a part of a plant.

As used herein the term “about” refers to ±10%.

The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.

The term “consisting of” means “including and limited to”.

The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.

As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.

Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.

Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.

As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.

It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.

Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.

Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.

RNA Extraction—

Tissues growing at various growth conditions (as described below) were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web (dot) invitrogen (dot) corn/content (dot)cfm?pageid=469]. Approximately 30-50 mg of tissue was taken from samples. The weighed tissues were ground using pestle and mortar in liquid nitrogen and resuspended in 500 μl of TRIzol Reagent. To the homogenized lysate, 100 μl of chloroform was added followed by precipitation using isopropanol and two washes with 75% ethanol. The RNA was eluted in 30 μl of RNase-free water. RNA samples were cleaned up using Qiagen's RNeasy minikit clean-up protocol as per the manufacturer's protocol (QIAGEN Inc, CA USA). For convenience, each micro-array expression information tissue type has received an expression Set ID.

Correlation Analysis—

was performed for selected genes according to some embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptom which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated (using Pearson correlation) along with a p-value for the significance of the correlation. When the correlation coefficient (R) between the levels of a gene's expression in a certain tissue and a phenotypic performance across ecotypes/variety/hybrid is high in absolute value (between 0.5-1), there is an association between the gene (specifically the expression level of this gene) the phenotypic characteristic (e.g., improved nitrogen use efficiency, abiotic stress tolerance, yield, growth rate and the like).

The present inventors have identified polynucleotides which upregulation of expression thereof can increase abiotic stress tolerance (ABST), water use efficiency (WUE), yield, oil content, growth rate, vigor, biomass, nitrogen use efficiency (NUE), and fertilizer use efficiency (FUE) of a plant.

All nucleotide sequence datasets used here were originated from publicly available databases or from performing sequencing using the Solexa technology (e.g. Barley and Sorghum). Sequence data from 100 different plant species was introduced into a single, comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated. Major databases used include:

Genomes

    • Arabidopsis genome [TAIR genome version 6 (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/)]
    • Rice genome [IRGSP build 4.0 (Hypertext Transfer Protocol://rgp (dot) dna (dot) affrc (dot) go (dot) jp/IRGSP/)].
    • Poplar [Populus trichocarpa release 1.1 from JGI (assembly release v1.0) (Hypertext Transfer Protocol://World Wide Web (dot) genome (dot) jgi-psf (dot) org/)]
    • Brachypodium [JGI 4× assembly, Hypertext Transfer Protocol://World Wide Web (dot) brachpodium (dot) org)]
    • Soybean [DOE-JGI SCP, version Glyma0 (Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)]
    • Grape [French-Italian Public Consortium for Grapevine Genome Characterization grapevine genome (Hypertext Transfer Protocol://World Wide Web (dot) genoscope (dot) cns (dot) fr/)]
    • Castobean [TIGR/J Craig Venter Institute 4× assembly [(Hypertext Transfer Protocol://msc (dot) jcvi (dot) org/r_communis]
    • Sorghum [DOE-JGI SCP, version Sbi1 [Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)].
    • Partially assembled genome of Maize [Hypertext Transfer Protocol://maizesequence (dot) org/]

Expressed EST and mRNA Sequences were Extracted from the Following Databases:

    • GenBank versions 154, 157, 160, 161, 164, 165, 166 and 168 (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/dbEST/)
    • RefSeq (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/RefSeq/).
    • TAIR (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/).

Protein and Pathway Databases

    • Uniprot [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/].
    • AraCyc [Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/biocyc/index (dot) jsp].
    • ENZYME [Hypertext Transfer Protocol://expasy (dot) org/enzyme/].

Microarray Datasets were Downloaded from:

    • GEO (Hypertext Transfer Protocol://World Wide Web.ncbi.nlm.nih.gov/geo/)
    • TAIR (Hypertext Transfer Protocol://World Wide Web. arabidopsis.org/).
    • Proprietary microarray data (WO2008/122980 and Example 2 below).

QTL and SNPs Information

    • Gramene [Hypertext Transfer Protocol://World Wide Web (dot) gramene (dot) org/qtl/].
    • Panzea [Hypertext Transfer Protocol://World Wide Web (dot) panzea (dot) org/index (dot) html].

Database Assembly—

was performed to build a wide, rich, reliable annotated and easy to analyze database comprised of publicly available genomic mRNA, ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway data QTLs, and other relevant information.

Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project. Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene. The capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623), 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.

EST Clustering and Gene Assembly—

For gene clustering and assembly of organisms with available genome sequence data (arabidopsis, rice, castorbean, grape, brachypodium, poplar, soybean, sorghum) the genomic LEADS version (GANG) was employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.

For organisms with no available full genome sequence data, “expressed LEADS” clustering software was applied.

Gene Annotation—

Predicted genes and proteins were annotated as follows: Blast search [Hypertext Transfer Protocol://blast (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] against all plant UniProt [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/] sequences was performed. Open reading frames of each putative transcript were analyzed and longest ORF with higher number of homologues was selected as predicted protein of the transcript. The predicted proteins were analyzed by InterPro [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/interpro/].

Blast against proteins from AraCyc and ENZYME databases was used to map the predicted transcripts to AraCyc pathways.

Predicted proteins from different species were compared using blast algorithm [Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.

Gene Expression Profiling—

Several data sources were exploited for gene expression profiling, namely microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes which are co-regulated under different development stages and environmental conditions and associated with different phenotypes.

Publicly available microarray datasets were downloaded from TAIR and NCBI GEO sites, renormalized, and integrated into the database. Expression profiling is one of the most important resource data for identifying genes important for ABST, increased yield, growth rate, vigor, biomass, oil content, WUE, NUE and FUE of a plant.

A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster. Digital expression, also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster. The tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, the following is taken into consideration: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.

Recently, the accuracy of this system was demonstrated by Portnoy et al., 2009 (Analysis Of The Melon Fruit Transcriptome Based On 454 Pyrosequencing) in: Plant & Animal Genomes XVII Conference, San Diego, Calif. Transcriptomic analysis, based on relative EST abundance in data was performed by 454 pyrosequencing of cDNA representing mRNA of the melon fruit. Fourteen double strand cDNA samples obtained from two genotypes, two fruit tissues (flesh and rind) and four developmental stages were sequenced. GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags, that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs). Analysis of the data obtained against the Cucurbit Genomics Database [Hypertext Transfer Protocol://World Wide Web (dot) icugi (dot) org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR data.

In order to produce a high throughput correlation analysis, the present inventors utilized a Tomato oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) coin/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 Toamto genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield components or vigor related parameters various plant characteristics of 18 different Tomato varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Correlation of Tomato Varieties Across Ecotype Grown Under 50% Irrigation Conditions

Experimental Procedures

Growth Procedure—

Tomato variety was grown under normal conditions (4-6 Liters/m2 per day) until flower stage. At this time, irrigation was reduced to 50% compared to normal conditions.

RNA Extraction—

Two tissues at different developmental stages [flower and leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 1 below.

TABLE 1
Tomato transcriptom expression sets
Expression SetSet ID
Leaf grown under Normal IrrigationA
Leaf grown under 50% IrrigationB
Flower grown under Normal IrrigationC
Flower grown under 50% IrrigationD
Table 1: Provided are the identification (ID) letters of each of the tomato expression sets.

Tomato Yield Components and Vigor Related Parameters Under 50% Water Irrigation Assessment—

10 Tomato varieties in 3 repetitive blocks (named A, B, and C,), each containing 6 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of tomato (Table 2, below). Harvest was conducted while 50% of the fruits were red (mature). Plants were separated to the vegetative part and fruits, of them, 2 nodes were analyzed for additional inflorescent parameters such as size, number of flowers, and inflorescent weight. Fresh weight of all vegetative material was measured. Fruits were separated to colors (red vs. green) and in accordance with the fruit size (small, medium and large). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Data parameters collected are summarized in Table 2, hereinbelow.

TABLE 2
Tomato correlated parameters (vectors)
Correlated parameter withCorrelation Id
50% Irrigation; Vegetative fresh weight [gr.]1
50% Irrigation; Fruit per plant [gr.]2
50% Irrigation; Inflorescence weight [gr.]3
50% Irrigation; number of flowers4
50% Irrigation; relative Water use efficiency5
50% Irrigation; Ripe fruit average weight [gr.]7
50% Irrigation: SPAD8
Normal Irrigation; vegetative fresh weight [gr.]9
Normal Irrigation; Fruit per plant [gr.]10
Normal Irrigation; Inflorescence weight [gr.]11
Normal Irrigation; number of flowers12
Normal Irrigation; relative Water use efficiency13
Normal Irrigation; number of fruit per plant14
Normal Irrigation; Ripe fruit average weight [gr.]15
Normal Irrigation; SPAD16
50% Irrigation; Vegetative fresh weight [gr.]/17
Normal Irrigation; vegetative fresh weight [gr.]
50% Irrigation; Fruit per plant [gr.]/18
Normal Irrigation; Fruit per plant [gr.]
50% Irrigation; Inflorescence weight [gr.]/19
Normal Irrigation; Inflorescence weight [gr.]
50% Irrigation; number of flowers/20
Normal Irrigation; number of flowers
50% Irrigation; relative Water use efficiency/21
Normal Irrigation; Water use efficiency
50% Irrigation; Ripe fruit average weight [gr.]/22
Normal Irrigation; Ripe fruit average weight [gr.]
50% Irrigation: SPAD/Normal Irrigation; SPAD23
Table 2. Provided are the tomato correlated parameters. “gr.” = grams; “SPAD” = chlorophyll levels;

Fruit Weight (Grams)—

At the end of the experiment [when 50% of the fruit were ripe (red)] all fruits from plots within blocks A-C were collected. The total fruits were counted and weighted. The average fruits weight was calculated by dividing the total fruit weight by the number of fruits.

Plant Vegetative Weight (Grams)—

At the end of the experiment [when 50% of the fruit were ripe (red)] all plants from plots within blocks A-C were collected. Fresh weight was measured (grams).

Inflorescence Weight (Grams)—

At the end of the experiment [when 50% of the fruits were ripe (red)] two Inflorescence from plots within blocks A-C were collected. The Inflorescence weight (gr.) and number of flowers per inflorescence were counted.

SPAD—

Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.

Water Use Efficiency (WUE)—

can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content was measured in control and transgenic plants. Fresh weight (FW) was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) was calculated according to the following Formula I [(FW−DW)/(TW−DW)×100] as described above.

Plants that maintain high relative water content (RWC) compared to control lines were considered more tolerant to drought than those exhibiting reduced relative water content

Experimental Results

10 different Tomato varieties were grown and characterized for 27 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 3, 4 and 5 below. Subsequent correlation analysis between the various transcriptom sets (Table 1) and the average parameters was conducted, and results were integrated to the database.

TABLE 3
Tomato accessions, measured parameters
Variety210197151817
6120.470.832.621.530.010.050.571.72
6130.480.341.093.170.190.011.410.34
6172.040.492.632.240.100.014.201.18
6180.250.452.711.980.000.050.551.36
6220.290.211.953.210.010.011.390.61
6231.020.311.762.750.000.013.280.64
6260.270.852.211.890.000.030.321.17
6290.530.331.761.650.140.001.621.06
6300.550.310.633.010.040.001.760.21
6310.410.291.112.290.090.011.420.48
Table 3: Provided are the measured yield components and vigor related parameters under 50% water irrigation for the tomato accessions (Varieties) according to the Correlation ID numbers (described in Table 2 above) as follows: 2 [50% Irrigation; Fruit per plant (gr.)]; 10 [Normal Irrigation; Fruit per plant (gr.)]; 1 [50% Irrigation; Vegetative fresh weight (gr.)]; 9 [Normal Irrigation; vegetative fresh weight (gr.)]; 7 [50% Irrigation; ripe Fruit average weight (gr.)]; 15 [Normal Irrigation; Ripe fruit average weight (gr.)]; 18 [50% Irrigation; Fruit per plant (gr.)/Normal Irrigation; Fruit per plant (gr.)]; 17 [50% Irrigation; Vegetative fresh weight (gr.)/Normal Irrigation; vegetative fresh weight (gr.)].
TABLE 4
Tomato accessions, additional measured parameters
Variety2281651323
6120.1949.3049.7072.1272.830.99
61324.3767.1037.2074.5176.471.80
61720.2656.0048.2066.1354.791.16
6180.0438.9043.4068.3377.610.90
6220.8650.2058.5073.2164.710.86
6230.7460.5051.1062.5075.251.18
6260.1754.7057.9062.8256.770.94
62927.8947.7054.5075.22100.000.88
63011.7958.1041.6063.6863.161.40
6319.9859.4059.1062.3175.131.01
Table 4: Provided are the measured yield components and vigor related parameters under 50% water irrigation for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 2 above) as follows: 22 [50% Irrigation; Ripe fruit average weight (gr.)/Normal Irrigation; Ripe fruit average weight (gr.)]; 8 [50% Irrigation: SPAD]; 16 [Normal # Irrigation; SPAD]; 5 [50% Irrigation; relative Water use efficiency]; 13 [Normal Irrigation; relative Water use efficiency]; 23 [50% Irrigation: SPAD/Normal Irrigation; SPAD].
TABLE 5
Tomato accessions, additional measured parameters
Variety214123112019
6120.9916.675.670.371.172.940.32
6130.976.5019.330.410.340.341.19
6171.2111.679.670.550.441.211.25
6180.8825.338.330.3111.313.040.03
6221.1314.6710.000.300.731.470.42
6230.8329.677.000.310.834.240.38
6261.1118.335.338.361.023.448.20
6290.7512.679.000.440.661.410.67
6301.0112.6710.670.270.701.190.38
6310.8311.339.000.430.331.261.31
Table 5: Provided are the measured yield components and vigor related parameters under 50% water irrigation for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 2 above) as follows: 21 [50% Irrigation; relative Water use efficiency/Normal Irrigation; Water use efficiency]; 4 [50% Irrigation; number of flowers]; 12 [Normal # Irrigation; number of flowers]; 3 [50% Irrigation; Inflorescence weight (gr.)]; 11 [Normal Irrigation; Inflorescence weight (gr.)]; 20 [50% Irrigation; number of flowers/Normal Irrigation; number of flowers]; 19 [50% Irrigation; Inflorescence weight (gr.)/Normal Irrigation; Inflorescence weight (gr.)].

Correlation of Early Vigor Traits Across Collection of Tomato Ecotypes Under High Salinity Concentration—

Ten Tomato varieties were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Tomato seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred for the high salinity to 100 mM NaCl solution or to the normal growth solution [full Hogland; KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter, KH2 PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].

RNA Extraction—

All 10 selected Tomato varieties were sample per each treatment. Two tissues [leaves and flowers] growing at 50% irrigation or under Normal conditions were sampled and RNA was extracted as described above.

TABLE 6
Tomato transcriptom experimental sets
Expression SetSet ID
Leaves at 100 mM NaClQ
Leaves at Normal conditionsR
Roots at 100 mM NaClS
Roots at Normal conditionsT
Table 6. Provided are the tomato transcriptom experimental sets Q-T.

Tomato Vigor Related Parameters Under 100 mM NaCl—

following 5 weeks of growing, plant were harvested and analyzed for leaf number, plant height, and plant weight. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Data parameters collected are summarize in Table 7, hereinbelow.

TABLE 7
Tomato correlated parameters (vectors)
Correlated parameter withCorrelation Id
100 mM NaCl: leaf Number24
100 mM NaCl: Plant height25
100 mM NaCl: Plant biomass26
Normal: leaf Number27
Normal: Plant height28
100 mM NaCl: leaf Number/Normal: leaf Number29
100 mM NaCl: Plant height/Normal: Plant height30
Table 7. Provided are the tomato correlated parameters (ID numbers 1-7).

Experimental Results

10 different Tomato varieties were grown and characterized for 3 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 8 below.

TABLE 8
Tomato accessions, measured parameters
Variety24272528262930
11393.566.565.6045.330.360.540.12
20783.946.896.4647.780.440.570.14
29585.007.338.4740.780.260.680.21
50774.006.228.5655.330.710.640.15
50803.566.338.8756.220.460.560.16
50844.396.447.5648.670.540.680.16
50853.175.898.6455.780.660.540.15
50883.725.565.5737.440.400.670.15
50894.006.115.8249.560.520.650.12
50924.285.679.3646.330.450.750.20
Table 8. Provided are the measured vigor related parameters under 100 mM NaCl for the tomato accessions (Varieties) according to the Correlation (Corr.) ID numbers (described in Table 7 above) as follows: 24 [100 mM NaCl: leaf Number]; 27 [Normal: leaf Number]; 25 [100 mM NaCl: Plant height]; 28 [Normal: Plant height]; 26 [100 mM NaCl: Plant biomass]; 29 [100 mM NaCl: leaf Number/Normal: leaf Number]; 30 [100 mM NaCl: Plant height/Normal: Plant height].

In order to produce a high throughput correlation analysis, the present inventors utilized a Sorghum oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 Sorghum genes and transcripts. In order to define correlations between the levels of RNA expression with ABST and yield components or vigor related parameters, various plant characteristics of 17 different sorghum varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Correlation of Sorghum Varieties Across Ecotype Grown Under Severe Drought Conditions

Experimental Procedures

17 Sorghum varieties were grown in 3 repetitive plots, in field. Briefly, the growing protocol was as follows: sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around V8 (Last leaf visible, but still rolled up, ear beginning to swell). At this point, irrigation was stopped, and severe drought stress was developed. In order to define correlations between the levels of RNA expression with drought, yield components or vigor related parameters, the 17 different sorghum varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

RNA Extraction—

All 10 selected Sorghum varieties were sample per each treatment. Plant tissues [Flag leaf and Flower meristem] growing under severe drought stress and plants grown under Normal conditions were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 9 below. Data parameters collected are summarize in Table 10, hereinbelow.

TABLE 9
Sorghum transcriptom experimental sets
Expression SetSet ID
Drought Stress: Flag leafU
Drought Stress: Flower meristemV
Drought Stress: inflorescenceW
Normal conditions: Flag leafX
Normal conditions: Flower meristemY
Normal conditions: inflorescenceZ
Table 9: Provided are the sorghum transcriptom experimental set U-Z.

Data parameters collected are summarize in Table 10, hereinbelow.

TABLE 10
Sorghum correlated parameters (vectors)
Correlated parameter withCorrelation Id
DW Drought [gr.]1
DW (5I) Drought [gr.]2
FW Inflorescence (5I) Drought [gr.]3
DW Inflorescence (5I) Drought [gr.]4
Grain per Inflorescence Drought [gr.]5
Grain per Inflorescence (5I) Drought [gr.]6
SPAD Drought7
Harvest Index Drought8
Leaf TP1 Drought9
Leaf TP2 Drought10
Leaf TP3 Drought11
Leaf TP4 Drought12
Leaf TP5 Drought13
Leaf TP6 Drought14
Plant Height TP2 Drought [cm]15
Plant Height TP3 Drought [cm]16
Plant Height TP4 Drought [cm]17
Plant Height TP5 Drought [cm]18
Plant Height TP6 Drought [cm]19
DW Normal [gr.]20
DW (5I) Normal [gr.]21
FW Inflorescence (5I) Normal [gr.]22
DW Inflorescence (5I) Normal [gr.]23
Grain per Plant Normal [gr.]24
Grain per Plant (5I) Normal [gr.]25
SPAD Normal26
Harvest Index Normal27
Leaf TP1 Normal28
Leaf TP2 Normal29
Leaf TP3 Normal30
Leaf TP4 Normal31
Leaf TP5 Normal32
Leaf TP6 Normal33
Plant Height TP2 Normal [cm]34
Plant Height TP3 Normal [cm]35
Plant Height TP4 Normal [cm]36
Plant Height TP5 Normal [cm]37
Plant Height TP6 Normal [cm]38
DW Drought/Normal [gr.]39
Grain per Plant drought/Normal [gr.]40
SPAD Drought/Normal41
Harvest Index drought/Normal42
FW (5I) Drought/Normal [gr.]43
DW (5I) Drought/Normal [gr.]44
Grain per Plant (5I) Drought/Normal [gr.]45
Plant HightTP5 Drought/Normal [cm]46
LeafTP5 Drought/Normal47
Table 10. Provided are the Sorghum correlated parameters (vectors). “DW” = Dry Weight; (5I)” = Average of five Inflorescences; “FW” = Fresh Weight; “gr.” = grams; “cm” = centimeter; “SPAD” = chlorophyll levels; “TP1” = X days after sowing; “TP2” = X days after sowing; “TP3” = X days after sowing; “TP4” = X days after sowing; “TP5” = X days after sowing; “TP6” = X days after sowing.

Grain Per Plant (gr.)—

At the end of the experiment (Inflorescence were dry) all spikes from plots within blocks A-C were collected. 5 Inflorescence were separately threshed and grains were weighted, all addition Inflorescence were threshed together and weighted as well. The average weight per Inflorescence was calculated by dividing the total grain weight by number of total Inflorescence per plot, or in case of 5 inflorescence, by weight by the total grain number by 5.

Plant Height—

Plant were characterize for height during groin period in 6 time Points. In each measure, plants were measured for its height using measuring tape. Height was measured from ground level to top of the longest leaf.

Inflorescence Weight (gr.)—

At the end of the experiment (when Inflorescence were dry) five Inflorescence from plots within blocks A-C were collected. The Inflorescence were weighted (gr.).

SPAD—

Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.

Vegetative Dry Weight and Inflorescence—

At the end of the experiment (when Inflorescence were dry) all Inflorescence and vegetative material from plots within blocks A-C were collected. The biomass and Inflorescence weight of each plot was separated, measured and divided by the number of Inflorescence.

Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Harvest Index (for Sorghum)—

The harvest index is calculated using Formula V.
Harvest Index=Average grain dry weight per Inflorescence/(Average vegetative dry weight per Inflorescence+Average Inflorescence dry weight)  Formula V:

Experimental Results

16 different sorghum varieties were grown and characterized for 49 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 11-16 below. Subsequent correlation analysis between the various transcriptom sets (Table 9) and the average parameters, was conducted. Follow, results were integrated to the database.

TABLE 11
Sorghum accessions, measured parameters
Seed ID12345678
200.200.470.390.010.030.0538.330.13
210.200.490.430.010.030.0538.980.15
220.340.730.300.010.020.0442.330.06
250.540.540.210.020.030.0443.150.05
260.360.610.300.010.020.0439.850.06
270.150.480.440.010.050.0742.680.34
280.130.440.380.010.030.0443.310.21
290.180.510.470.010.050.080.29
300.120.450.400.010.040.0542.710.30
310.100.440.380.000.030.0440.080.29
320.130.430.380.010.030.0443.980.20
330.120.480.430.010.030.0745.440.25
340.180.540.430.010.050.1044.750.29
350.140.460.410.010.040.0542.580.25
360.130.420.380.010.040.0443.810.32
370.180.500.430.010.040.0546.730.23
Table 11: Provided are the measured parameters under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 12 above) as follows: 1 [DW Drought (gr.)]; 2 [W(5I) Drought (gr.)]; 3 [FW Inflorescence(5I) Drought (gr.)]; 4 [DW Inflorescence (5I) Drought (gr.)]; 5 [Grain per Inflorescence Drought (gr.)]; 6 [Grain per Inflorescence(5I) Drought (gr.)]; 7 [SPAD Drought]; 8 [Harvest Index Drought.
TABLE 12
Sorghum accessions, addition measured parameters
Seed ID910111213141516
203.005.334.507.757.087.7510.7522.25
214.255.505.757.928.587.928.0018.50
225.005.835.758.679.088.6716.0030.33
254.255.255.508.179.588.1713.8327.92
265.506.256.009.389.759.3816.3332.67
275.006.506.179.139.089.1315.1732.25
284.755.755.838.587.758.5813.5028.92
295.256.505.179.508.508.2516.4226.83
305.506.255.927.837.087.8317.5834.17
315.006.756.087.256.7513.0815.8330.50
325.506.255.929.008.259.0017.0030.58
335.006.426.087.507.927.5013.9227.17
345.006.336.0810.009.8310.0014.8327.58
355.005.505.428.388.508.3812.5028.00
364.756.335.338.679.178.6717.5829.33
375.255.585.5010.0010.589.5015.9230.42
Table 12: Provided are the measured parameters under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 10 above) as follows: 9 [Leaf TP1 Drought]; 10 [Leaf TP2 Drought]; 11 [Leaf TP3 Drought]; 12 [Leaf TP4 Drought]; 13 [Leaf TP5 Drought]; 14 [Leaf TP6 Drought]; 15 [Plant Height TP2 Drought (cm)]; 16 [Plant Height TP3 Drought (cm)].
TABLE 13
Sorghum accessions, addition measured parameters
Seed ID1718192021222324
2038.0050.2538.000.160.460.410.0080.031
2130.8345.2530.830.250.690.490.0120.026
22110.8392.0860.830.330.440.150.0070.019
2549.5873.9249.580.460.560.090.0150.027
2649.75100.5049.750.360.550.130.0100.046
2746.8858.6746.880.150.470.420.0090.048
2841.9270.7541.920.140.450.390.0070.031
2946.1367.6746.130.170.480.410.0100.040
3050.1768.5050.170.130.460.330.0080.038
3143.5865.6743.580.100.420.390.0050.032
3250.8379.2550.920.100.420.410.0080.033
3342.4257.6742.420.110.500.430.0100.033
3445.5078.5845.500.160.490.440.0100.052
3550.3860.7550.380.130.450.420.0080.036
3648.8371.1753.830.140.470.430.0080.038
3749.8373.9251.420.210.520.430.0130.042
Table 13: Provided are the measured parameters under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 10 above) as follows: 17 [Plant Height TP4 Drought (cm)]; 18 [Plant Height TP5 Drought (cm)]; 19 [Plant Height TP6 Drought (cm)]; 20 [DW Normal (gr.)]; 21 [DW (5I) Normal (gr.)]; 22 [FW Inflorescence(5I) Normal (gr.)]; 23 [DW Inflorescence(5I) Normal (gr.)]; 24 [Grain per Plant Normal (gr.)].
TABLE 14
Sorghum accessions, addition measured parameters
Seed ID2526272829303132
200.0543.010.204.335.315.446.736.75
210.0540.700.114.006.086.38.8.38
220.0343.260.054.676.006.568.449.81
250.0345.760.054.335.385.137.888.69
260.0741.610.125.176.316.318.139.50
270.0645.210.334.836.136.199.139.19
280.0445.140.234.336.066.067.506.69
290.0643.030.244.676.135.638.259.00
300.0645.590.304.176.445.947.006.75
310.0544.830.345.007.006.006.756.38
320.0645.330.354.836.316.388.067.81
330.0746.540.294.676.256.316.947.88
340.0743.990.414.676.255.947.949.94
350.0545.090.294.335.635.948.068.69
360.0645.140.284.676.385.757.568.56
370.0543.130.204.175.886.567.9410.31
Table 14: Provided are the measured parameters under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 10 above) as follows: 25 [Grain per Plant (5I) Normal (gr.)]; 26 [SPAD Normal]; 27 [Harvest Index Normal]; 28 [Leaf TP1 Normal]; 29 [Leaf TP2 Normal]; 30 [Leaf TP3 Normal]; 31 [Leaf TP4 Normal]; 32 [Leaf TP5 Normal].
TABLE 15
Sorghum accessions, addition measured parameters
Seed ID3334353637383940
206.7310.6324.5037.3147.1337.311.260.83
21.8.0019.88.40.06.0.811.19
228.4416.0031.1347.7582.9447.751.021.03
257.8814.1927.2545.9474.1345.941.160.94
268.1315.3127.2541.4479.6941.441.010.48
279.1315.6931.1944.8858.0044.880.991.05
287.5015.8830.2542.1358.8142.130.940.89
298.2514.6326.1941.0064.3141.001.061.28
307.0018.3831.8842.5058.6942.060.960.96
316.7518.1332.1941.8859.2541.881.040.92
328.0617.2529.7543.3866.8843.381.330.82
336.9414.8828.1339.8160.6339.811.050.90
347.9413.5027.0040.6373.3840.631.120.99
358.0614.6329.1944.3859.6344.381.101.04
367.5616.3827.7543.2564.6943.250.941.04
377.9417.3131.6341.0073.8141.000.860.98
Table 15: Provided are the measured parameters under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 10 above) as follows: 33 [Leaf TP6 Normal]; 34 [Plant Height TP2 Normal (cm)]; 35 [Plant Height TP3 Normal (cm)]; 36 [Plant Height TP4 Normal (cm)]; 37 [Plant Height TP5 Normal (cm)]; 38 [Plant Height TP6 Normal (cm)]; 39 [DW Drought/Normal (gr.)]; 40 [Grain per Plant drought/Normal (gr.)].
TABLE 16
Sorghum accessions, addition measured parameters
Seed ID41424344454647
200.890.660.951.031.061.071.05
210.961.380.880.711.131.131.02
220.981.092.011.671.271.110.93
250.940.862.260.961.181.001.10
260.960.522.371.100.551.261.03
270.941.041.031.021.131.010.99
280.960.930.970.970.791.201.16
290.911.191.161.061.351.050.94
300.940.971.230.980.881.171.05
310.890.860.981.040.941.111.06
320.970.580.911.030.661.191.06
330.980.840.990.970.970.951.01
341.020.700.981.121.371.070.99
350.940.890.981.020.911.020.98
360.971.120.880.880.731.101.07
371.081.141.010.960.991.001.03
Table 16: Provided are the measured parameter under 50% irrigation conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 10 above) as follows: 41 [SPAD Drought/Normal]; 42 [Harvest Index drought/Normal]; 43 [FW(5I) Drought/Normal (gr.)]; 44 [DW(5I) Drought/Normal (gr.)]; 45 [Grain per Plant (5I) Drought/Normal (gr.)]; 46 [Plant HightTP5 Drought/Normal (cm)]; 47 [LeafTP5 Drought/Normal].

Sorghum Vigor Related Parameters Under 100 mM NaCl and Low Temperature (8-10° C.)—

Ten Sorghum varieties were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Sorghum seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (100 mM NaCl) solution, low temperature (8-10° C.) or at Normal growth solution [full Hogland; KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter, KH2 PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].

RNA Extraction—

All 10 selected Sorghum varieties were sample per each treatment. Two tissues [leaves and roots] growing at 100 mM NaCl, low temperature (8-10° C.) or under Normal conditions were sampled and RNA was extracted as described above.

TABLE 17
Sorghum correlated parameters (vectors)
Correlated parameter withCorrelation Id
100 mM NaCl: leaf Number48
100 mM NaCl: Plant height49
100 mM NaCl: Shoot DW50
100 mM NaCl: Root DW51
100 mM NaCl: SPAD52
low temperature: leaf Number53
low temperature: Plant height54
low temperature: Shoot DW55
low temperature: Root DW56
low temperature: SPAD57
Normal: leaf Number58
Normal: Plant height59
Normal: Shoot DW60
Normal: Root DW61
Normal: SPAD62
leaf Number 100 mM NaCl/Normal63
Plant height 100 mM NaCl/Normal64
Shoot DW 100 mM NaCl/Normal65
Root DW 100 mM NaCl/Normal66
SPAD 100 mM NaCl/Normal67
leaf Number low temperature/Normal68
Plant height low temperature/Normal69
Shoot DW low temperature/Normal70
Root DW low temperature/Normal71
SPAD low temperature/Normal72
Table 17: provided are the Sorghum correlated parameters (vectors).

Experimental Results

10 different Sorghum varieties were grown and characterized for 25 parameters as described above (Table 17). The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 18-20 below. Subsequent correlation analysis between the various transcriptom sets (Table 9) and the average parameters (Tables 18-20), was conducted (Tables 21). Follow, results were integrated to the database.

TABLE 18
Sorghum accessions, measured parameters
Seed ID48515052495356
203.670.350.6632.7314.633.880.83
223.881.452.4335.1416.314.160.95
264.281.492.4027.9720.564.521.47
274.030.811.6130.9314.704.281.06
283.971.031.7734.5316.434.330.71
293.980.951.6629.9916.124.171.38
303.902.002.2332.0915.613.942.04
314.181.392.7631.8618.714.261.03
343.701.291.2932.5113.654.201.01
373.821.761.5534.3215.724.041.01
Table 18. Provided are the measured parameters under 100 mM NaCl and low temperature (8-10° C.) conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 17 above) as follows: 48 [100 mM NaCl: leaf Number]; 51 [100 mM NaCl: Root DW]; 50 [100 mM NaCl: Shoot DW]; 52 [100 mM NaCl: SPAD]; 49 [100 mM NaCl: Plant height]; 53 [low temperature: leaf Number]; 56 [low temperature: Root DW].
TABLE 19
Sorghum accessions, addition measured parameters
Seed ID55575458596160
201.0328.628.834.1711.220.420.81
221.3430.3112.324.4813.771.071.89
261.7127.0414.424.9317.481.382.51
271.2832.289.504.5313.080.831.26
281.1228.2812.534.5213.500.861.55
291.6929.8911.824.6413.530.961.50
302.2432.4711.284.4916.751.111.93
311.2628.6313.224.7916.150.991.95
341.0831.719.974.3713.950.801.48
371.0229.6110.024.5415.280.881.85
Table 19: Provided are the measured parameters under 100 mM NaCl and low temperature (8-10° C.) conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 17 above) as follows: 55 [low temperature: Shoot DW]; 57 [low temperature: SPAD]; 54 [low temperature: Plant height]; 58 [Normal: leaf Number]; 59 [Normal: Plant height]; 61 [Normal: Root DW]; 60 [Normal: Shoot DW].
TABLE 20
Sorghum accessions, addition measured parameters
Seed ID6671706772
200.831.971.281.231.07
221.350.880.711.201.03
261.081.070.680.940.91
270.981.291.021.061.11
281.200.830.721.381.13
290.991.451.121.221.21
301.801.831.161.041.05
311.401.030.651.251.12
341.631.270.730.990.96
372.001.140.551.020.88
Table 20: Provided are the measured parameters under 100 mM NaCl and low temperature (8-10° C.) conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 17 above) as follows: 66 [Root DW 100 mM NaCl/Normal]; 71 [Root DW low temperature/Normal]; 70 [Shoot DW low temperature/Normal]; 67 [SPAD 100 mM NaCl/Normal]; 72 [SPAD low temperature/Normal].

Tables 21 hereinbelow, provides correlation analysis between the characterized parameters (as described above in Examples 2 and 3) and the tissue transcriptom.

TABLE 21
Correlation analysis between the expression level of selected Genes of some
embodiments of the invention in various tissues and the phenotypic performance
under normal or drought conditions
GeneExp.Corr.GeneExp.Corr.
NameRP valuesetSet IDNameRP valuesetSet ID
LAB2760.70.03523X24LAB1740.80.004143V5
LAB1740.810.006827Y24LAB2900.90.000239U1
LAB2900.830.00258Y24LAB2900.80.004123W1
LAB3470.780.00722V4LAB2950.80.002967V3
LAB2950.830.00311V5LAB2950.80.010068Y24
LAB3040.800.01113Z21LAB3040.70.023194W6
Table 21. “Corr. Set ID”—correlation set ID according to the correlated parameters Table

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 maize genes and transcripts. In order to define correlations between the levels of RNA expression with yield and NUE components or vigor related parameters, various plant characteristics of 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Correlation of Maize Hybrids Across Ecotypes Grown Under Regular Growth Conditions

Experimental Procedures

12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols. In order to define correlations between the levels of RNA expression with NUE and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Analyzed Sorghum Tissues—

All 10 selected maize hybrids were sample per each treatment. Plant tissues [Flag leaf, Flower meristem, Grain, Cobs, Internodes] growing under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 22 below.

TABLE 22
Maize transcriptom expression sets
Expression SetSet ID
Maize field/Normal/flower meristemA
Maize field/Normal/EarB
Maize field/Normal/Grain DistalC
Maize field/Normal/Grain BasalD
Maize field/Normal/InternodeE
Maize field/Normal/LeafF
Table 22: Provided are the maize transcriptom expression sets. Leaf = the leaf below the main ear; Flower meristem = Apical meristem following male flower initiation; Ear = the female flower at the anthesis day. Grain Distal = maize developing grains from the cob extreme area, Grain Basal = maize developing grains from the cob basal area; Internodes = internodes located above and below the main ear in the plant.

The following parameters were collected using digital imaging system:

Grain Area (cm2)—

At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.

Grain Length and Grain Width (cm)—

At the end of the growing period the grains were separated from the ear. A sample of −200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.

Ear Area (cm2)—

At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.

Ear Length and Ear Width (cm)

At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.

The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.

Normalized Grain Weight Per Plant (gr.)—

At the end of the experiment all ears from plots within blocks A-C were collected. 6 ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.

Ear FW (gr.)—

At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).

Plant Height and Ear Height—

Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located

Leaf Number Per Plant—

Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.

Relative Growth Rate

was calculated using Formula II (described above).

SPAD—

Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS)

Dry Weight Per Plant—

At the end of the experiment (when Inflorescence were dry) all vegetative material from plots within blocks A-C were collected.

Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Harvest Index (HI) (Maize)—

The harvest index was calculated using Formula VI.
Harvest Index=Average grain dry weight per Ear/(Average vegetative dry weight per Ear+Average Ear dry weight)  Formula VI:

Percent Filled Ear [%]—

it was calculated as the percentage of the Ear area with grains out of the total ear.

Cob Diameter [cm]—

The diameter of the cob without grains was measured using a ruler.

Kernel Row Number Per Ear—

The number of rows in each ear was counted.

Experimental Results

12 different maize hybrids were grown and characterized for different parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 24-25).

TABLE 23
Maize correlated parameters (vectors)
CorrelationsCorrelation ID
SPAD 54DPS [SPAD units]1
SPAD 46DPS [SPAD units]2
Growth Rate Leaf Num3
Plant Height per Plot [cm]4
Ear Height [cm]5
Leaf Number per Plant [number]6
Ear Length [cm]7
Percent Filled Ear [%]8
Cob Diameter [mm]9
Kernel Row Number per Ear [number]10
DW per Plant [gr]11
Ear FW per Plant gr]12
Normalized Grain Weight per plant [gr]13
Ears FW per plot [gr]14
Normalized Grain Weight per plot [gr]15
Ear Area [cm2]16
Ear Width [cm]17
Grain Area [cm2]18
Grain Length [cm]19
Grain Width [cm]20
Table 23. SPAD 46DPS and SPAD 54DPS: Chlorophyl level after 46 and 54 days after sowing (DPS).
TABLE 24
Measured parameters in Maize accessions under normal conditions
Seed ID
1234567891011
Line 154.855.30.30628713511.920.980.428.716.2656
Line 254.351.70.2832781351219.780.62916.2658
Line 357.256.40.2212701168.419.194.323.815472
Line 45653.50.28127513211.720.582.128.116.2641
Line 559.755.20.26923811411.821.392.725.715.9581
Line 659.159.40.24422594.312.318.282.825.815.2569
Line 75858.50.24426412112.41973.226.416511
Line 860.455.90.26625210812.218.681.125.214.8544
Line 954.853
Line 1053.350
Line 1161.159.70.30127811212.621.791.626.715.4522
Line 1251.453.90.19416460.49.2816.781.114.3574141
Table 24. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
TABLE 25
Additional measured parameters in Maize accessions
under regular growth conditions
Seed ID
121314151617181920
Line 127215728014091.65.730.8061.230.824
Line 224614127815485.15.580.7531.170.81
Line 319012919012177.95.10.6741.070.794
Line 426215428815290.55.670.7551.180.803
Line 5264177248159965.530.7661.20.803
Line 617812017611772.45.230.7131.120.803
Line 7189120192123745.220.7141.140.791
Line 819713420513176.55.330.7531.130.837
Line 9
Line 10
Line 1126117326417195.45.580.7621.180.812
Line 1254.314340.855.24.120.7960.9210.675
Table 25. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.

In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 47,500 Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 25 different Barley accessions were analyzed. Among them, 13 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

Analyzed Barley Tissues—

Five tissues at different developmental stages [meristem, flower, booting spike, stem, flag leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 26 below.

TABLE 26
Barley transcriptom expression sets
Expression SetSet ID
MeristemA
FlowerB
Booting spikeC
StemD
Flag leafE
Table 26.

Barley Yield Components and Vigor Related Parameters Assessment—

25 Barley accessions in 4 repetitive blocks (named A, B, C, and D), each containing 4 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 3227, below). Harvest was conducted while 50% of the spikes were dry to avoid spontaneous release of the seeds. Plants were separated to the vegetative part and spikes, of them, 5 spikes were threshed (grains were separated from the glumes) for additional grain analysis such as size measurement, grain count per spike and grain yield per spike. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

TABLE 27
Barley standard descriptors
TraitParameterRangeDescription
Growth habitScoring1-9Prostrate (1) or Erect (9)
Hairiness ofScoringP (Presence)/AAbsence (1) or Presence (2)
basal leaves(Absence)
StemScoring1-5Green (1), Basal only or Half or more
pigmentation(5)
Days toDaysDays from sowing to emergence of
Floweringawns
Plant heightCentimeter (cm)Height from ground level to top of the
longest spike excluding awns
Spikes perNumberTerminal Counting
plant
Spike lengthCentimeter (cm)Terminal Counting 5 spikes per plant
Grains perNumberTerminal Counting 5 spikes per plant
spike
Vegetative dryGramOven-dried for 48 hours at 70° C.
weight
Spikes dryGramOven-dried for 48 hours at 30° C.
weight
Table 27.

Grains Per Spike—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The total number of grains from 5 spikes that were manually threshed was counted. The average grain per spike is calculated by dividing the total grain number by the number of spikes.

Grain Average Size (cm)—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.

Grain Average Weight (mgr)—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The total grains from 5 spikes that were manually threshed were counted and weight. The average weight was calculated by dividing the total weight by the total grain number.

Grain Yield Per Spike (gr)—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The total grains from 5 spikes that were manually threshed were weight. The grain yield was calculated by dividing the total weight by the spike number.

Spike Length Analysis—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The five chosen spikes per plant were measured using measuring tape excluding the awns.

Spike Number Analysis—

At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D are collected. The spikes per plant were counted.

Growth Habit Scoring—

At the growth stage 10 (booting), each of the plants was scored for its growth habit nature. The scale that was used was 1 for prostate nature till 9 for erect.

Hairiness of Basal Leaves—

At the growth stage 5 (leaf sheath strongly erect; end of tillering), each of the plants was scored for its hairiness nature of the leaf before the last. The scale that was used was 1 for prostate nature till 9 for erect.

Plant Height—

At the harvest stage (50% of spikes were dry) each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns.

Days to Flowering—

Each of the plants was monitored for flowering date. Days of flowering was calculated from sowing date till flowering date.

Stem Pigmentation—

At the growth stage 10 (booting), each of the plants was scored for its stem color. The scale that was used was 1 for green till 5 for full purple.

Vegetative Dry Weight and Spike Yield—

At the end of the experiment (50% of the spikes were dry) all spikes and vegetative material from plots within blocks A-D are collected. The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.

Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Spike Yield Per Plant=Total Spike Weight Per Plant (Gr) after Drying at 30° C. in oven for 48 hours.

Harvest Index (for Barley)—

The harvest index is calculated using Formula XVI.
Harvest Index=Average spike dry weight per plant/(Average vegetative dry weight per plant+Average spike dry weight per plant)  Formula XVI:

TABLE 28
Barley correlated parameters (vectors)
Correlated parameter with (units)Correlation Id
Grains per spike (numbers)1
Grains size (mm2)2
Grain weight (miligrams)3
Grain Yield per spike (gr/spike)4
Spike length (cm)5
Spikes per plant (numbers)6
Growth habit (scores 1-9)7
Hairiness of basal leaves (scoring 1-2)8
Plant height (cm)9
Days to flowering (days)10
Stem pigmentation (scoring 1-5)11
Vegetative dry weight (gram)12
Harvest Index (ratio)13
Table 28.

Experimental Results

13 different Barley accessions were grown and characterized for 13 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 29 and 30 below. Subsequent correlation analysis between the various transcriptom sets (Table 26) and the average parameters, was conducted (Tables 31 and 32). Follow, results were integrated to the database.

TABLE 29
Measured parameters of correlation Ids in Barley accessions
Accession/
Parameter61035217
Amatzya48.8562.4035.0512.040.2720.232.60
Ashqelon48.2764.0828.0610.930.2317.982.00
Canada park37.4265.1528.7611.830.2417.271.92
Havarim stream61.9258.9217.879.900.1717.733.17
Jordan est33.2763.0041.2211.680.2914.474.33
Klil41.6970.5429.7311.530.2816.782.69
Maale EfraimND52.8025.228.860.2213.473.60
Mt Arbel40.6360.8834.9911.220.2814.073.50
Mt Harif62.0058.1020.5811.110.1921.543.00
Neomi49.3353.0027.508.580.2212.103.67
Neot Kdumim50.6060.4037.1310.180.2714.362.47
Oren canyon43.0964.5829.5610.510.2715.283.50
Yeruham51.4056.0019.589.800.1817.073.00
Table 29. Provided are the values of each of the parameters measured in Barley accessions according to the following correlation identifications (Correlation Ids): 6 = Spikes per plant; 10 = Days to flowering; 3 = Grain weight; 5 = Spike length; 2 = Grains Size; 1 = Grains per spike; 7 = Growth habit.
TABLE 30
Barley accessions, additional measured parameters
Accession/
Parameter894111213
Amatzya1.53134.273.561.1378.870.45
Ashqelon1.33130.502.542.5066.140.42
Canada park1.69138.772.581.6968.490.40
Havarim stream1.08114.581.571.7553.390.44
Jordan est1.42127.753.032.3368.300.43
Klil1.69129.382.522.3174.170.40
Maale Efraim1.30103.891.551.7035.350.52
Mt Arbel1.19121.632.622.1958.330.48
Mt Harif1.00126.802.302.3062.230.44
Neomi1.1799.831.681.8338.320.49
Neot Kdumim1.60121.402.683.0768.310.45
Oren canyon1.08118.422.351.5856.15ND
Yeruham1.17117.171.672.1742.68ND
Table 30. Provided are the values of each of the parameters measured in Barley accessions according to the following correlation identifications (Correlation Ids): 8 = Hairiness of basal leaves; 9 = Plant height; 4 = Grain yield per spike; 11 = Stem pigmentation; 12 = Vegetative dry weight; 13 = Harvest Index.
TABLE 31
Correlation between the expression level of selected Genes of some embodiments of the invention in
various tissues and the phenotypic performance under normal conditions across barley accessions
Gene NameRP valueExp. Set IDCorr. Set IDGene NameRP valueExp. Set IDCorr. Set ID
LAB1950.800.193838D5LAB1950.730.2649D12
Table 31. “Corr. Set ID”—correlation set ID according to the correlated parameters Table
TABLE 32
Correlation between the expression level of selected Orthologs genes of some embodiments of the invention
in various tissues and the phenotypic performance under normal conditions across barley accessions
Gene NameRP valueExp. SetCorr. Set IDGene NameRP valueExp. SetCorr. Set ID
LAB352_H00.710.0470C6
Table 32. “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.

In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Arabidopsis oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 Arabidopsis genes and transcripts. To define correlations between the levels of RNA expression with NUE, yield components or vigor related parameters various plant characteristics of 14 different Arabidopsis ecotypes were analyzed. Among them, ten ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

Analyzed Arabidopsis Tissues—

Two tissues of plants [leaves and stems] growing at two different nitrogen fertilization levels (1.5 mM Nitrogen or 6 mM Nitrogen) were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized Table 33 below.

TABLE 33
Arabidopsis transcriptom experimental sets
Expression SetSet ID
Leaves at 1.5 mM Nitrogen fertilizationA
Leaves at 6 mM Nitrogen fertilizationB
Stems at 1.5 mM Nitrogen fertilizationC
Stem at 6 mM Nitrogen fertilizationD
Table 33.

Arabidopsis yield components and vigor Related Parameters Under Different Nitrogen Fertilization Levels Assessment—

10 Arabidopsis accessions in 2 repetitive plots each containing 8 plants per plot were grown at greenhouse. The growing protocol used was as follows: surface sterilized seeds were sown in Eppendorf tubes containing 0.5× Murashige-Skoog basal salt medium and grown at 23° C. under 12-hour light and 12-hour dark daily cycles for 10 days. Then, seedlings of similar size were carefully transferred to pots filled with a mix of perlite and peat in a 1:1 ratio. Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 5 mM KCl, 0.01 mM H3B03 and microelements, while normal irrigation conditions was achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 0.01 mM H3B03 and microelements. To follow plant growth, trays were photographed the day nitrogen limiting conditions were initiated and subsequently every 3 days for about 15 additional days. Rosette plant area was then determined from the digital pictures. Image) software was used for quantifying the plant size from the digital pictures [Hypertext Transfer Protocol://rsb (dot) info (dot) nih (dot) gov/ij/] utilizing proprietary scripts designed to analyze the size of rosette area from individual plants as a function of time. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Data parameters collected are summarized in Table 3934, hereinbelow.

TABLE 34
Arabidopsis correlated parameters (vectors)
Correlated parameter withCorrelation Id
N 1.5 mM; Rosette Area at day 8 [cm2]1
N 1.5 mM; Rosette Area at day 10 [cm2]2
N 1.5 mM; Plot Coverage at day 8 [%]3
N 1.5 mM; Plot Coverage at day 10 [%]4
N 1.5 mM; Leaf Number at day 105
N 1.5 mM; Leaf Blade Area at day 10 [cm2]6
N 1.5 mM; RGR of Rosette Area at day 3 [cm2/day]7
N 1.5 mM; t50 Flowering [day]8
N 1.5 mM; Dry Weight [gr/plant]9
N 1.5 mM; Seed Yield [gr/plant]10
N 1.5 mM; Harvest Index11
N 1.5 mM; 1000 Seeds weight [gr]12
N 1.5 mM; seed yield/rosette area at day 10 [gr/cm2]13
N 1.5 mM; seed yield/leaf blade [gr/cm2]14
N 1.5 mM; % Seed yield reduction compared to N 6 mM15
N 1.5 mM; % Biomass reduction compared to N 6 mM16
N 1.5 mM; N level/DW [SPAD unit/gr]17
N 1.5 mM; DW/N level [gr/SPAD unit]18
N 1.5 mM; seed yield/N level [gr/SPAD unit]19
N 6 mM; Rosette Area at day 8 [cm2]20
N 6 mM; Rosette Area at day 10 [cm2]21
N 6 mM; Plot Coverage at day 8 [%]22
N 6 mM; Plot Coverage at day 10 [%]23
N 6 mM; Leaf Number at day 1024
N 6 mM; Leaf Blade Area at day 1025
N 6 mM; RGR of Rosette Area at day 3 [cm2/gr]26
N 6 mM; t50 Flowering [day]27
N 6 mM; Dry Weight [gr/plant]28
N 6 mM; Seed Yield [gr/plant]29
N 6 mM; Harvest Index30
N 6 mM; 1000 Seeds weight [gr]31
N 6 mM; seed yield/rosette area day at day 10 [gr/cm2]32
N 6 mM; seed yield/leaf blade [gr/cm2]33
N 6 mM; N level/FW34
N 6 mM; DW/N level [gr/SPAD unit]35
N 6 mM; N level/DW (SPAD unit/gr plant)36
N 6 mM; Seed yield/N unit [gr/SPAD unit]37
Table 34. “N” = Nitrogen at the noted concentrations; “gr.” = grams; “SPAD” = chlorophyll levels; “t50” = time where 50% of plants flowered; “gr/SPAD unit” = plant biomass expressed in grams per unit of nitrogen in plant measured by SPAD. “DW” = plant dry weight; “N level/DW” = plant Nitrogen level measured in SPAD unit per plant biomass [gr]; “DW/N level” = plant biomass per plant [gr]/SPAD unit;

Assessment of NUE, Yield Components and Vigor-Related Parameters—

Ten Arabidopsis ecotypes were grown in trays, each containing 8 plants per plot, in a greenhouse with controlled temperature conditions for about 12 weeks. Plants were irrigated with different nitrogen concentration as described above depending on the treatment applied. During this time, data was collected documented and analyzed. Most of chosen parameters were analyzed by digital imaging.

Digital Imaging—Greenhouse Assay

An image acquisition system, which consists of a digital reflex camera (Canon EOS 400D) attached with a 55 mm focal length lens (Canon EF-S series) placed in a custom made Aluminum mount, was used for capturing images of plants planted in containers within an environmental controlled greenhouse. The image capturing process is repeated every 2-3 days starting at day 9-12 till day 16-19 (respectively) from transplanting.

An image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

Leaf Analysis—

Using the digital analysis leaves data was calculated, including leaf number, leaf blade area, Rosette diameter and area.

Vegetative Growth Rate:

the relative growth rate (RGR) of leaf blade area (Formula VIII), leaf number (Formula IX), rosette area (Formula X), rosette diameter (Formula XI), plot coverage (Formula XII) and Petiole Relative Area (XIII) are calculated as follows:
Relative growth rate of leaf blade area=Regression coefficient of leaf area along time course.  Formula VIII:
Relative growth rate of plant leaf number=Regression coefficient of plant leaf number along time course.  Formula IX:
Relative growth rate of rosette area=Regression coefficient of rosette area along time course.  Formula X:
Relative growth rate of rosette diameter=Regression coefficient of rosette diameter along time course.  Formula XI:
Relative growth rate of plot coverage=Regression coefficient of plot.  Formula XII:
Petiole Relative Area=[(Leaf blade*Leaf number)/Rosette.  Formula XIII:

Seed Yield and 1000 Seeds Weight—

At the end of the experiment all seeds from all plots were collected and weighed in order to measure seed yield per plant in terms of total seed weight per plant (gr). For the calculation of 1000 seed weight, an average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.

Dry Weight and Seed Yield—

At the end of the experiment, plant were harvested and left to dry at 30° C. in a drying chamber. The biomass was separated from the seeds, weighed and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber.

Harvest Index—

The harvest index was calculated using Formula IV as described above.

T50 Days to Flowering—

Each of the repeats was monitored for flowering date. Days of flowering was calculated from sowing date till 50% of the plots flowered.

Plant Nitrogen Level—

The chlorophyll content of leaves is a good indicator of the nitrogen plant status since the degree of leaf greenness is highly correlated to this parameter. Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Based on this measurement, parameters such as the ratio between seed yield per nitrogen unit [seed yield/N level=seed yield per plant [gr]/SPAD unit], plant DW per nitrogen unit [DW/N level=plant biomass per plant [g]/SPAD unit], and nitrogen level per gram of biomass [N level/DW=SPAD unit/plant biomass per plant (gr)] were calculated.

Percent of Seed Yield Reduction—

measures the amount of seeds obtained in plants when grown under nitrogen-limiting conditions compared to seed yield produced at normal nitrogen levels expressed in %.

Experimental Results 10 different Arabidopsis accessions (ecotypes) were grown and characterized for 37 parameters as described above. The average for each of the measured parameters was calculated using the JMP software and values are summarized in Table 35 below. Subsequent correlation analysis between the various transcriptom sets (Table 33) and the measured parameters was conducted (Tables 36 below). Following are the results integrated to the database.

TABLE 35
Measured parameters in Arabidopsis accessions
Ecotype
TreatmentLine-1Line-2Line-3Line-4Line-5Line-6Line-7Line-8Line-9Line-10
N 1.5 mM; Rosette Area at0.7600.7091.0611.1570.9961.0000.9100.9421.1180.638
day 8
N 1.5 mM; Rosette Area at1.4301.3251.7661.9711.7541.8321.8181.6361.9961.150
day 10
N 1.5 mM; Plot Coverage %3.2213.0034.4974.9024.2204.2383.8583.9904.7382.705
at day 8
N 1.5 mM; Plot Coverage %6.0585.6147.4848.3517.4327.7647.7026.9338.4584.871
at day 10
N 1.5 mM; Leaf Number at6.8757.3137.3137.8757.9387.7507.6257.1888.6255.929
day 10
N 1.5 mM; Leaf Blade Area0.3350.2660.3740.3870.3730.3700.3860.3500.3790.307
at day 10
N 1.5 mM; RGR of Rosette0.6310.7930.5020.4910.6050.7200.8250.6460.6680.636
Area at day 3
N 1.5 mM; t50 Flowering15.96720.96814.83624.70823.56623.69818.05919.48823.56821.888
[day]
N 1.5 mM; Dry Weight0.1640.1240.0820.1130.1840.1240.1340.1060.1480.171
[gr/plant]
N 1.5 mM; Seed Yield0.0320.0250.0230.0100.0060.0090.0320.0190.0120.014
[gr/plant]
N 1.5 mM; Harvest Index0.1920.2030.2950.0850.0310.0710.2410.1790.0810.079
N 1.5 mM; 1000 Seeds0.0160.0160.0180.0140.0180.0220.0150.0140.0220.019
weight[gr]
N 1.5 mM; seed yield/0.0220.0190.0140.0050.0030.0050.0180.0130.0070.012
rosette area day at day 10
N 1.5 mM; seed yield/leaf0.0950.0950.0630.0260.0150.0240.0840.0590.0340.044
blade
N 1.5 mM; % Seed yield72.55984.70178.78487.99691.82092.62276.71081.93891.30185.757
reduction compared to 6
mM
N 1.5 mM; % Biomass60.74676.70678.56078.14062.97278.64173.19283.06877.19070.120
reduction compared to 6
mM
N 1.5 mM; Spad/FW45.59042.10828.15153.11167.000
N 1.5 mM; SPAD/DW167.300241.061157.823194.977169.343
N 1.5 mM; DW/SPAD0.0060.0040.0060.0050.006
N 1.5 mM; seed yield/spad0.0010.0000.0000.0010.000
N 6 mM; Rosette Area at0.7590.8571.4771.2781.2241.0951.2361.0941.4100.891
day 8
N 6 mM; Rosette Area at1.4061.5702.6732.4182.2072.1422.4741.9652.7211.642
day 10
N 6 mM; Plot Coverage % at3.2163.6316.2595.4135.1874.6415.2364.6345.9743.774
day 8
N 6 mM; Plot Coverage % at5.9576.65411.32410.2449.3529.07610.4858.32711.5286.958
day 10
N 6 mM; Leaf Number at6.2507.3138.0638.7508.0638.7508.3757.1259.4386.313
day 10
N 6 mM; Leaf Blade Area at0.3420.3150.5230.4490.4300.4300.4970.4280.5090.405
day 10
N 6 mM; RGR of Rosette0.6891.0240.6140.6010.4770.6510.6760.5840.6130.515
Area at day 3
N 6 mM; t50 Flowering16.37120.50014.63524.00023.37823.59515.03319.75022.88718.804
[day]
N 6 mM; Dry Weight0.4190.5310.3820.5180.4960.5790.5010.6280.6490.573
[gr/plant]
N 6 mM; Seed Yield0.1160.1650.1080.0820.0680.1190.1390.1070.1380.095
[gr/plant]
N 6 mM; Harvest Index0.2800.3090.2840.1580.1360.2060.2760.1710.2120.166
N 6 mM; 1000 Seeds0.0150.0170.0180.0120.0160.0160.0150.0140.0170.016
weight[gr]
N 6 mM; seed yield/rosette0.0820.1060.0410.0340.0310.0560.0570.0550.0510.058
area day at day 10
N 6 mM; seed yield/leaf0.3390.5260.2070.1830.1580.2770.2810.2520.2710.235
blade
N 6 mM; Spad/FW22.48928.26817.64133.32339.003
N 6 mM; DW/SPAD0.0190.0180.0280.0150.015
(biomass/N unit)
N 6 mM; spad/DW (gN/g53.70554.62535.54866.47968.054
plant)
N 6 mM; Seed yield/N unit0.0040.0030.0020.0050.003
Table 35. Provided are the measured parameters under various treatments in various ecotypes (Arabidopsis accessions).
TABLE 36
Correlation between the expression level of selected Genes of some embodiments
of the invention in various tissues and the phenotypic performance under normal
or low nitrogen fertilization conditions across Arabidopsis accessions
Gene NameRP valueExp. setCorr. Set IDGene NameRP valueExp. setCorr. Set ID
LAB1900.880.0495D37LAB1900.840.0021A19
Table 36. “Corr. Set ID”—correlation set ID according to the correlated parameters Table

To produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized an Arabidopsis thaliana oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 40,000 A. thaliana genes and transcripts designed based on data from the TIGR ATH1 v.5 database and Arabidopsis MPSS (University of Delaware) databases. To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 15 different Arabidopsis ecotypes were analyzed. Among them, nine ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

Analyzed Arabidopsis Tissues—

Five Tissues at Different Developmental Stages including root, leaf, flower at anthesis, seed at 5 days after flowering (DAF) and seed at 12 DAF, representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 37 below.

TABLE 37
Tissues used for Arabidopsis transcriptom expression sets
Expression SetSet ID
RootA
LeafB
FlowerC
Seed 5 DAFD
Seed 12 DAFE
Table 37: Provided are the identification (ID) letters of each of the Arabidopsis expression sets (A-E). DAF = days after flowering.

Yield Components and Vigor Related Parameters Assessment—

Eight out of the nine Arabidopsis ecotypes were used in each of 5 repetitive blocks (named A, B, C, D and E), each containing 20 plants per plot. The plants were grown in a greenhouse at controlled conditions in 22° C., and the N:P:K fertilizer (20:20:20; weight ratios) [nitrogen (N), phosphorus (P) and potassium (K)] was added. During this time data was collected, documented and analyzed. Additional data was collected through the seedling stage of plants grown in a tissue culture in vertical grown transparent agar plates. Most of chosen parameters were analyzed by digital imaging.

Digital Imaging in Tissue Culture—

A laboratory image acquisition system was used for capturing images of plantlets sawn in square agar plates. The image acquisition system consists of a digital reflex camera (Canon EOS 300D) attached to a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4×150 Watts light bulb) and located in a darkroom.

Digital Imaging in Greenhouse—

The image capturing process was repeated every 3-4 days starting at day 7 till day 30. The same camera attached to a 24 mm focal length lens (Canon EF series), placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The white tubs were square shape with measurements of 36×26.2 cm and 7.5 cm deep. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows. This process was repeated every 3-4 days for up to 30 days.

An image analysis system was used, which consists of a personal desktop computer (Intel P43.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing program, which was developed at the U.S National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 6 Mega Pixels (3072×2048 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Leaf Analysis—

Using the digital analysis leaves data was calculated, including leaf number, area, perimeter, length and width. On day 30, 3-4 representative plants were chosen from each plot of blocks A, B and C. The plants were dissected, each leaf was separated and was introduced between two glass trays, a photo of each plant was taken and the various parameters (such as leaf total area, laminar length etc.) were calculated from the images. The blade circularity was calculated as laminar width divided by laminar length.

Root Analysis—

During 17 days, the different ecotypes were grown in transparent agar plates. The plates were photographed every 3 days starting at day 7 in the photography room and the roots development was documented (see examples in FIGS. 3A-3F). The growth rate of roots was calculated according to Formula XIV: Relative growth rate of root coverage=Regression coefficient of root coverage along time course.

Vegetative Growth Rate Analysis—

was calculated according to Formulas VIII-XIII above. The analysis was ended with the appearance of overlapping plants.

For comparison between ecotypes the calculated rate was normalized using plant developmental stage as represented by the number of true leaves. In cases where plants with 8 leaves had been sampled twice (for example at day 10 and day 13), only the largest sample was chosen and added to the Anova comparison.

Seeds in Siliques Analysis—

On day 70, 15-17 siliques were collected from each plot in blocks D and E. The chosen siliques were light brown color but still intact. The siliques were opened in the photography room and the seeds were scatter on a glass tray, a high resolution digital picture was taken for each plot. Using the images the number of seeds per silique was determined.

Seeds Average Weight—

At the end of the experiment all seeds from plots of blocks A-C were collected. An average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.

Oil Percentage in Seeds—

At the end of the experiment all seeds from plots of blocks A-C were collected. Columbia seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra—Oxford Instrument) and its MultiQuant sowftware package.

Silique Length Analysis—

On day 50 from sowing, 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.

Dry Weight and Seed Yield—

On day 80 from sowing, the plants from blocks A-C were harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot was separated, measured and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber; Seed yield per plant=total seed weight per plant (gr).

Oil Yield—

The oil yield was calculated using Formula XV.
Seed Oil yield=Seed yield per plant (gr)*Oil % in seed.  Formula XV:

Harvest Index (Seed)—

The harvest index was calculated using Formula IV (described above).

Experimental Results

Nine different Arabidopsis ecotypes were grown and characterized for 18 parameters (named as vectors).

TABLE 38
Arabidopsis correlated parameters (vectors)
Correlated parameter withCorrelation ID
Root length day 13 (cm)1
Root length day 7 (cm)2
Relative root growth (cm/day) day 133
Fresh weight per plant (gr) at bolting stage4
Dry matter per plant (gr)5
Vegetative growth rate (cm2/day) till 8 true leaves6
Blade circularity7
Lamina width (cm)8
Lamina length (cm)9
Total leaf area per plant (cm)10
1000 Seed weight (gr)11
Oil % per seed12
Seeds per silique13
Silique length (cm)14
Seed yield per plant (gr)15
Oil yield per plant (mg)16
Harvest Index17
Leaf width/length18
Table 38. Provided are the Arabidopsis correlated parameters (correlation ID Nos. 1-18). Abbreviations: Cm = centimeter(s); gr = gram(s); mg = milligram(s).

The characterized values are summarized in Tables 39 and 40 below.

TABLE 39
Measured parameters in Arabidopsis ecotypes
Ecotype15161211517101314
An-10.34118.6334.420.02030.640.5346.8645.441.06
Col-00.44138.7331.190.02301.270.35109.8953.471.26
Ct-10.59224.0638.050.02521.050.5658.3658.471.31
Cvi (N8580)0.42116.2627.760.03441.280.3356.8035.271.47
Gr-60.61218.2735.490.02021.690.37114.6648.561.24
Kondara0.43142.1132.910.02631.340.32110.8237.001.09
Ler-10.36114.1531.560.02050.810.4588.4939.381.18
Mt-00.62190.0630.790.02261.210.51121.7940.531.18
Shakdara0.55187.6234.020.02351.350.4193.0425.531.00
Table 39. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: 15 = Seed yield per plant (gram); 16 = oil yield per plant (mg); 12 = oil % per seed; 11 = 1000 seed weight (gr); 5 = dry matter per plant (gr); 17 = harvest index; 10 = total leaf area per plant (cm); 13 = seeds per silique; 14 = Silique length (cm).
TABLE 40
Additional measured parameters in Arabidopsis ecotypes
Ecotype6321498187
An-10.3130.6310.9374.4191.5102.7671.3850.3530.509
Col-00.3780.6641.7598.5303.6073.5441.6970.2880.481
Ct-10.4841.1760.7015.6211.9353.2741.4600.3160.450
Cvi (N8580)0.4741.0890.7284.8342.0823.7851.3740.2580.370
Gr-60.4250.9070.9915.9573.5563.6901.8280.3560.501
Kondara0.6450.7741.1636.3724.3384.5971.6500.2730.376
Ler-10.4300.6061.2845.6493.4673.8771.5100.3050.394
Mt-00.3840.7011.4147.0603.4793.7171.8170.3350.491
Shakdara0.4710.7821.2517.0413.7104.1491.6680.3070.409
Table 40. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: 6 = Vegetative growth rate (cm2/day) until 8 true leaves; 3 = relative root growth (cm/day) (day 13); 2 = Root length day 7 (cm); 1 = Root length day 13 (cm); 4 = fresh weight per plant (gr) at bolting stage; 9. = Lamima length (cm); 8 = Lamina width (cm); 18 = Leaf width/length; 7 = Blade circularity.

In order to conduct high throughput gene expression correlation analysis, the present inventors used cotton oligonucleotide microarray, designed and produced by “Comparative Evolutionary Genomics of Cotton” [Hypertext Transfer Protocol (http)://cottonevolution (dot) info/). This Cotton Oligonucleotide Microarray is composed of 12,006 Integrated DNA Technologies (IDT) oligonucleotides derived from an assembly of more than 180,000 Gossypium ESTs sequenced from 30 cDNA libraries. For additional details see PCT/IL2005/000627 and PCT/IL2007/001590 which are fully incorporated herein by reference.

TABLE 41
Cotton transcriptom experimental sets
Expression SetSet ID
cotton fiber 5dA
cotton fiber 10dB
Table 41.

In order to define correlations between the levels of RNA expression and fiber length, fibers from 8 different cotton lines were analyzed. These fibers were selected showing very good fiber quality and high lint index (Pima types, originating from other cotton species, namely G. barbadense), different levels of quality and lint indexes from various G. hirsutum lines: good quality and high lint index (Acala type), and poor quality and short lint index (Tamcot type, and old varieties). A summary of the fiber length of the different lines is provided in Table 42.

Experimental Procedures

RNA Extraction—

Fiber development stages, representing different fiber characteristics, at 5, 10 and 15 DPA were sampled and RNA was extracted as described above.

Fiber Length Assessment—

Fiber length of the selected cotton lines was measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point World Wide Web (dot) cottoninc (dot) com/ClassificationofCotton/?Pg=4#Length].

Experimental Results

Eight different cotton lines were grown, and their fiber length was measured. The fibers UHM values are summarized in Table 42 hereinbelow. The R square was calculated for each of the genes.

TABLE 42
Summary of the fiber length of the 8 different cotton lines
Length (UHM)
Cotton varietyMeanSTD
SA 217 SD0.890.04
SA 68 SD1.010.03
Tamcot1.060.01
DP 901.10.08
ZG 2361.150.00
Coker 3101.210.02
S71.260.02
Pima1.360.00
Table 42: Presented are the means and standard deviations (STD) of 8 different cotton lines.

Based on the above described bioinformatics and experimental tools, the present inventors have identified 217 which exhibit a major impact on abiotic stress tolerance, plant yield, oil content, growth rate, vigor, biomass, growth rate, nitrogen use efficiency, water use efficiency and fertilizer use efficiency when expression thereof is increased in plants. The identified genes, their curated polynucleotide and polypeptide sequences, as well as their updated sequences according to GenBank database are summarized in Table 43, hereinbelow.

TABLE 43
Identified genes for increasing abiotic stress tolerance, water use efficiency, yield,
growth rate, vigor, biomass, growth rate, oil content, nitrogen use efficiency and
fertilizer use efficiency of a plant
Polynucl.Polypep.
SEQ IDSEQ ID
Gene NameCluster NameOrganismNO:NO:
LAB53barley|gb157SOLEXA|AF000939barley1474
LAB54barley|gb157SOLEXA|AF026538barley2475
LAB55barley|gb157SOLEXA|AJ477127barley3476
LAB56barley|gb157SOLEXA|AL504663barley4477
LAB58barley|gb157SOLEXA|BE420577barley5478
LAB64barley|gb157SOLEXA|BF624328barley6479
LAB65barley|gb157SOLEXA|BQ662625barley7480
LAB67brachypodium|gb169|BE414847brachypodium8481
LAB68brachypodium|gb169|BE415661brachypodium9482
LAB69brachypodium|gb169|BE418188brachypodium10483
LAB70canola|gb161|CD814191canola11484
LAB71cotton|gb164|BE052211cotton12485
LAB72cotton|gb164|CO132512cotton13486
LAB73grape|gb160|BM436750grape14487
LAB74grape|gb160|CB004439grape15488
LAB76grape|gb160|CB974118grape16489
LAB80rice|gb170|OS01G09620rice17490
LAB81rice|gb170|OS02G54780rice18491
LAB82rice|gb170|OS02G54890rice19492
LAB83rice|gb170|OS03G21640rice20493
LAB84rice|gb170|OS04G58810rice21494
LAB86rice|gb170|OS08G37660rice22495
LAB88rice|gb170|OS09G27820rice23496
LAB89rice|gb170|OS10G37760rice24497
LAB92sorghum|gb161.crp|AI724271sorghum25498
LAB93sorghum|gb161.crp|AI783065sorghum26499
LAB94sorghum|gb161.crp|AW282995sorghum27500
LAB97sorghum|gb161.crp|AW283405sorghum28501
LAB98sorghum|gb161.crp|AW285328sorghum29502
LAB101sorghum|gb161.crp|AW677797sorghum30503
LAB102sorghum|gb161.crp|AW679677sorghum31504
LAB106sorghum|gb161.crp|BE363251sorghum32505
LAB107sorghum|gb161.crp|BE366167sorghum33506
LAB108sorghum|gb161.crp|BE366746sorghum34507
LAB109sorghum|gb161.crp|BG047558sorghum35508
LAB110sorghum|gb161.crp|BM322761sorghum36509
LAB113tomato|gb164|AA824960tomato37510
LAB115tomato|gb164|AI488164tomato38511
LAB116tomato|gb164|AI637375tomato39512
LAB117tomato|gb164|AI772185tomato40513
LAB119tomato|gb164|AI772981tomato41514
LAB120tomato|gb164|AW218593tomato42515
LAB121tomato|gb164|AW223810tomato43516
LAB122tomato|gb164|AW442266tomato44517
LAB123tomato|gb164|AW442830tomato45518
LAB124tomato|gb164|BG123767tomato46519
LAB125tomato|gb164|BG124210tomato47520
LAB126tomato|gb164|BG126148tomato48521
LAB127tomato|gb164|BG127842tomato49522
LAB128tomato|gb164|BG128502tomato50523
LAB129tomato|gb164|BG129905tomato51524
LAB130tomato|gb164|BG133230tomato52525
LAB131tomato|gb164|BG626085tomato53526
LAB133tomato|gb164|BG629133tomato54527
LAB137wheat|gb164|BE416704wheat55528
LAB138wheat|gb164|BE426494wheat56529
LAB141wheat|gb164|BE591380wheat57530
LAB145rice|gb170|OS12G25090rice58531
LAB147rice|gb170|OS05G49940rice59532
LAB152sorghum|gb161.crp|AW746652sorghum60533
LAB153sorghum|gb161.crp|AW923691sorghum61534
LAB154sorghum|gb161.crp|AW923843sorghum62535
LAB156sorghum|gb161.crp|BG357440sorghum63536
LAB157sorghum|gb161.crp|BI075600sorghum64537
LAB158sorghum|gb161.crp|BI098554sorghum65538
LAB159sorghum|gb161.crp|BM317501sorghum66539
LAB160sorghum|gb161.crp|BM329994sorghum67540
LAB161sorghum|gb161.crp|BQ704124sorghum68541
LAB162sorghum|gb161.crp|CD949495sorghum69542
LAB163sorghum|gb161.crp|CF074481sorghum70543
LAB164sorghum|gb161.crp|CF430071sorghum71544
LAB165sorghum|gb161.crp|SBGWP119861sorghum72545
LAB166sorghum|gb161.crp|BG239954sorghum73546
LAB167sorghum|gb161.crp|AI724270sorghum74547
LAB169sorghum|gb161.crp|AW053133sorghum75548
LAB170sorghum|gb161.crp|AW065993sorghum76549
LAB171sorghum|gb161.crp|AW155674sorghum77550
LAB172sorghum|gb161.crp|AW453175sorghum78551
LAB174sorghum|gb161.crp|AW679828sorghum79552
LAB175sorghum|gb161.crp|AW745804sorghum80553
LAB176sorghum|gb161.crp|CD205409sorghum81554
LAB177sorghum|gb161.crp|CF431793sorghum82555
LAB178tomato|gb164|AI490504tomato83556
LAB179wheat|gb164|CV763774wheat84557
LAB181arabidopsis|gb165|AT1G30500arabidopsis85558
LAB182arabidopsis|gb165|AT1G54160arabidopsis86559
LAB183arabidopsis|gb165|AT2G17500arabidopsis87560
LAB185arabidopsis|gb165|AT2G28400arabidopsis88561
LAB186arabidopsis|gb165|AT2G42520arabidopsis89562
LAB187arabidopsis|gb165|AT3G11410arabidopsis90563
LAB188arabidopsis|gb165|AT3G44860arabidopsis91564
LAB189arabidopsis|gb165|AT3G58570arabidopsis92565
LAB190arabidopsis|gb165|AT5G39050arabidopsis93566
LAB191arabidopsis|gb165|AT5G47640arabidopsis94567
LAB193barley|gb157SOLEXA|AL500288barley95568
LAB195barley|gb157SOLEXA|AL502556barley96569
LAB197barley|gb157SOLEXA|AV832785barley97570
LAB204barley|gb157SOLEXA|BE411310barley98571
LAB206barley|gb157SOLEXA|BE420904barley99572
LAB207barley|gb157SOLEXA|BE421932barley100573
LAB210barley|gb157SOLEXA|BG365882barley101574
LAB211barley|gb157SOLEXA|BG368375barley102575
LAB212barley|gb157SOLEXA|BG418029barley103576
LAB213barley|gb157SOLEXA|BI949346barley104577
LAB217cotton|gb164|AI731250cotton105578
LAB218cotton|gb164|BG443778cotton106579
LAB220maize|gb170|AI615250maize107580
LAB221maize|gb170|AI622102maize108581
LAB222maize|gb170|CA400624maize109582
LAB224rice|gb170|OS01G14440rice110583
LAB225rice|gb170|OS01G52110rice111584
LAB228rice|gb170|OS01G68320rice112585
LAB229rice|gb170|OS01G68370rice113586
LAB230rice|gb170|OS01G68730rice114587
LAB231rice|gb170|OS01G68750rice115588
LAB232rice|gb170|OS01G68760rice116589
LAB233rice|gb170|OS01G68810rice117590
LAB234rice|gb170|OS01G68820rice118591
LAB235rice|gb170|OS01G68860rice119592
LAB236rice|gb170|OS02G08440rice120593
LAB237rice|gb170|OS02G32520rice121594
LAB238rice|gb170|OS02G51750rice122595
LAB240rice|gb170|OS03G04770rice123596
LAB241rice|gb170|OS03G05310rice124597
LAB242rice|gb170|OS03G15890rice125598
LAB243rice|gb170|OS03G49440rice126599
LAB247rice|gb170|OS05G27780rice127600
LAB249rice|gb170|OS05G46480rice128601
LAB250rice|gb170|OS05G51510rice129602
LAB252rice|gb170|OS08G35620rice130603
LAB253rice|gb170|OS09G15670rice131604
LAB254rice|gb170|OS09G31031rice132605
LAB255rice|gb170|OS09G31090T2rice133606
LAB258rice|gb170|OS09G31478rice134607
LAB259rice|gb170|OS09G31482rice135608
LAB260rice|gb170|OS10G11580rice136609
LAB261rice|gb170|OS10G28200rice137610
LAB262rice|gb170|OS10G35460rice138611
LAB263rice|gb170|OS10G36550rice139612
LAB264rice|gb170|OS10G37340rice140613
LAB265rice|gb170|OS12G41880rice141614
LAB267sorghum|gb161.crp|AF083327sorghum142615
LAB268sorghum|gb161.crp|AI391767sorghum143616
LAB269sorghum|gb161.crp|AI714721sorghum144617
LAB270sorghum|gb161.crp|AI834359sorghum145618
LAB271sorghum|gb161.crp|AI855376sorghum146619
LAB272sorghum|gb161.crp|AW067349sorghum147620
LAB274sorghum|gb161.crp|AW283715sorghum148621
LAB275sorghum|gb161.crp|AW287164sorghum149622
LAB276sorghum|gb161.crp|AW676813sorghum150623
LAB277sorghum|gb161.crp|AW677021sorghum151624
LAB278sorghum|gb161.crp|AW678652sorghum152625
LAB279sorghum|gb161.crp|AW745740sorghum153626
LAB280sorghum|gb161.crp|AW924546sorghum154627
LAB281sorghum|gb161.crp|AW924680sorghum155628
LAB282sorghum|gb161.crp|BE126094sorghum156629
LAB283sorghum|gb161.crp|BE363639sorghum157630
LAB284sorghum|gb161.crp|BE366498sorghum158631
LAB286sorghum|gb161.crp|BE599941sorghum159632
LAB289sorghum|gb161.crp|BG050539sorghum160633
LAB290sorghum|gb161.crp|BG050987sorghum161634
LAB292sorghum|gb161.crp|BG051832sorghum162635
LAB293sorghum|gb161.crp|BG104129sorghum163636
LAB294sorghum|gb161.crp|BG158316sorghum164637
LAB295sorghum|gb161.crp|BG558012sorghum165638
LAB296sorghum|gb161.crp|BM259168sorghum166639
LAB297sorghum|gb161.crp|BM417007sorghum167640
LAB298sorghum|gb161.crp|BM737392sorghum168641
LAB299sorghum|gb161.crp|CB924966sorghum169642
LAB300sorghum|gb161.crp|CD220284sorghum170643
LAB302sorghum|gb161.crp|CD233103sorghum171644
LAB303sorghum|gb161.crp|CD233331sorghum172645
LAB304sorghum|gb161.crp|EB406896sorghum173646
LAB306soybean|gb168|AW684299soybean174647
LAB307soybean|gb168|BE822951soybean175648
LAB308soybean|gb168|BF633506soybean176649
LAB309soybean|gb168|BF637946soybean177650
LAB310soybean|gb168|BM521769soybean178651
LAB311sunflower|gb162|DY950975sunflower179652
LAB312tomato|gb164|AF079231tomato180653
LAB314tomato|gb164|AI485630tomato181654
LAB315tomato|gb164|AI487529tomato182655
LAB316tomato|gb164|AI773156tomato183656
LAB317tomato|gb164|AI773737tomato184657
LAB318tomato|gb164|AI899075tomato185658
LAB319tomato|gb164|AW032666tomato186659
LAB320tomato|gb164|AW979674tomato187660
LAB323tomato|gb164|BG132099tomato188661
LAB324tomato|gb164|BG628155tomato189662
LAB325tomato|gb164|BG630481tomato190663
LAB326tomato|gb164|BG642701tomato191664
LAB327tomato|gb164|BP889760tomato192665
LAB329tomato|gb164|X51904tomato193666
LAB335wheat|gb164|BE488670wheat194667
LAB336wheat|gb164|BE490582wheat195668
LAB337wheat|gb164|BE498413wheat196669
LAB339wheat|gb164|BE604530wheat197670
LAB340wheat|gb164|BF478640wheat198671
LAB342brachypodium|gb169|BE404202brachypodium199672
LAB343canola|gb161|CX187805canola200673
LAB344maize|gb170|AI665177maize201674
LAB345rice|gb170|OS02G48730rice202675
LAB346rice|gb170|OS06G18000rice203676
LAB347sorghum|gb161.crp|BG239839sorghum204677
LAB348sorghum|gb161.crp|EB407478sorghum205678
LAB349soybean|gb168|BE820344soybean206679
LAB351switchgrass|gb167|DN148583switchgrass207680
LAB352wheat|gb164|BE604638wheat208681
LAB353wheat|gb164|BF428610wheat209682
LAB355brachypodium|gb169|BF473402brachypodium210683
LAB367canola|gb161|CN726397canola211684
LAB381poplar|gb170|CV256220poplar212685
LAB383soybean|gb168|CA850722soybean213686
LAB276_H0maize|gb170|BG321080maize214687
LAB290_H0maize|gb170|AI665410maize215688
LAB347_H0maize|gb170|BM381583maize216689
LAB291sorghum|gb161.crp|BG051306sorghum217
LAB109sorghum|gb161.crp|BG047558sorghum35699
LAB55barley|gb157SOLEXA|AJ477127barley218690
LAB64barley|gb157SOLEXA|BF624328barley219691
LAB64barley|gb157SOLEXA|BF624328barley220692
LAB65barley|gb157SOLEXA|BQ662625barley221693
LAB67brachypodium|gb169|BE414847brachypodium222481
LAB68brachypodium|gb169|BE415661brachypodium223482
LAB69brachypodium|gb169|BE418188brachypodium224483
LAB72cotton|gb164|CO132512cotton225694
LAB83rice|gb170|OS03G21640rice226493
LAB89rice|gb170|OS10G37760rice227695
LAB92sorghum|gb161.crp|AI724271sorghum228498
LAB97sorghum|gb161.crp|AW283405sorghum229696
LAB97sorghum|gb161.crp|AW283405sorghum230697
LAB106sorghum|gb161.crp|BE363251sorghum231698
LAB110sorghum|gb161.crp|BM322761sorghum232509
LAB120tomato|gb164|AW218593tomato233700
LAB125tomato|gb164|BG124210tomato234701
LAB133tomato|gb164|BG629133tomato235702
LAB158sorghum|gb161.crp|BI098554sorghum236703
LAB160sorghum|gb161.crp|BM329994sorghum237704
LAB161sorghum|gb161.crp|BQ704124sorghum238705
LAB162sorghum|gb161.crp|CD949495sorghum239542
LAB165sorghum|gb161.crp|SBGWP119861sorghum240706
LAB177sorghum|gb161.crp|CF431793sorghum241707
LAB178tomato|gb164|AI490504tomato242556
LAB179wheat|gb164|CV763774wheat243708
LAB193barley|gb157SOLEXA|AL500288barley244709
LAB193barley|gb157SOLEXA|AL500288barley245568
LAB207barley|gb157SOLEXA|BE421932barley246573
LAB218cotton|gb164|BG443778cotton247710
LAB221maize|gb170|AI622102maize248711
LAB222maize|gb170|CA400624maize249712
LAB224rice|gb170|OS01G14440rice250583
LAB274sorghum|gb161.crp|AW283715sorghum251713
LAB280sorghum|gb161.crp|AW924546sorghum252714
LAB293sorghum|gb161.crp|BG104129sorghum253715
LAB293sorghum|gb161.crp|BG104129sorghum254716
LAB295sorghum|gb161.crp|BG558012sorghum255717
LAB297sorghum|gb161.crp|BM417007sorghum256718
LAB298sorghum|gb161.crp|BM737392sorghum257641
LAB300sorghum|gb161.crp|CD220284sorghum258719
LAB303sorghum|gb161.crp|CD233331sorghum259720
LAB311sunflower|gb162|DY950975sunflower260721
LAB314tomato|gb164|AI485630tomato261722
LAB316tomato|gb164|AI773156tomato262723
LAB320tomato|gb164|AW979674tomato263724
LAB323tomato|gb164|BG132099tomato264725
LAB326tomato|gb164|BG642701tomato265726
LAB327tomato|gb164|BP889760tomato266727
LAB348sorghum|gb161.crp|EB407478sorghum267728
LAB349soybean|gb168|BE820344soybean268729
LAB381poplar|gb170|CV256220poplar269730
LAB276_H0maize|gb170|BG321080maize270687
LAB290_H0maize|gb170|AI665410maize271688
LAB347_H0maize|gb170|BM381583maize272731
LAB176sorghum|gb161.crp|CD205409sorghum273
LAB291sorghum|gb161.crp|BG051306sorghum274
Table 43. Provided are the identified genes which expression thereof in plants increases abiotic stress tolerance, water use efficiency, yield, growth rate, vigor, biomass, growth rate, oil content, nitrogen use efficiency and fertilizer use efficiency of a plant. “Polynucl.”—polynucleotide; “Polypep.”—polypeptide.

The concepts of orthology and paralogy have recently been applied to functional characterizations and classifications on the scale of whole-genome comparisons. Orthologs and paralogs constitute two major types of homologs: The first evolved from a common ancestor by specialization, and the latter are related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have diverged in function while true orthologs are more likely to retain identical function over evolutionary time.

To further investigate and identify putative ortholog genes of the genes affecting ABST, WUE, yield (e.g., seed yield, oil yield, biomass, grain quantity and/or quality), oil content, growth rate, vigor, NUE and FUE (presented in Table 43, Example 9 above), all sequences were aligned using the BLAST (/Basic Local Alignment Search Tool/). Sequences sufficiently similar were tentatively grouped. These putative orthologs were further organized under a Phylogram—a branching diagram (tree) assumed to be a representation of the evolutionary relationships among the biological taxa. Putative ortholog groups were analyzed as to their agreement with the phylogram and in cases of disagreements these ortholog groups were broken accordingly

Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed). The annotations from all the ESTs clustered to a gene were analyzed statistically by comparing their frequency in the cluster versus their abundance in the database, allowing to construct a numeric and graphic expression profile of that gene, which is termed “digital expression”. The rationale of using these two complementary methods with methods of phenotypic association studies of QTLs, SNPs and phenotype expression correlation is based on the assumption that true orthologs are likely to retain identical function over evolutionary time. These methods provide different sets of indications on function similarities between two homologous genes, similarities in the sequence level-identical amino acids in the protein domains and similarity in expression profiles.

Methods for searching and identifying homologues of yield and improved agronomic traits such as ABS tolerance and FUE related polypeptides or polynucleotides are well within the realm of the skilled artisan. The search and identification of homologous genes involves the screening of sequence information available, for example, in public databases, which include but are not limited to the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database. A number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequence queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology: 76-80, 1994; Birren et al., Genome Analysis, I: 543, 1997). Such methods involve alignment and comparison of sequences. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information. Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.

The homologous genes may belong to the same gene family. The analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W. A neighbour-joining tree of the proteins homologous to the genes in this invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (orthologue) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here. Advantageously, these family members may be useful in the methods of the invention. Example of other plants are included here but not limited to, barley (Hordeum vulgare), Arabidopsis (Arabidopsis thaliana), maize (Zea mays), cotton (Gossypium), Oilseed rape (Brassica napus), Rice (Oryza sativa), Sugar cane (Saccharum officinarum), Sorghum (Sorghum bicolor), Soybean (Glycine max), Sunflower (Helianthus annuus), Tomato (Lycopersicon esculentum), Wheat (Triticum aestivum)

The above-mentioned analyses for sequence homology is preferably carried out on a full-length sequence, but may also be based on a comparison of certain regions such as conserved domains. The identification of such domains would also be well within the realm of the person skilled in the art and would involve, for example, a computer readable format of the nucleic acids of the present invention, the use of alignment software programs and the use of publicly available information on protein domains, conserved motifs and boxes. This information is available in the PRODOM (Hypertext Transfer Protocol://World Wide Web (dot) biochem (dot) ucl (dot) ac (dot) uk/bsm/dbbrowser/protocol/prodomqry (dot) html), PIR (Hypertext Transfer Protocol://pir (dot) Georgetown (dot) edul) or Pfam (Hypertext Transfer Protocol://World Wide Web (dot) sanger (dot) ac (dot) uk/Software/Pfam/) database. Sequence analysis programs designed for motif searching may be used for identification of fragments, regions and conserved domains as mentioned above. Preferred computer programs include, but are not limited to, MEME, SIGNALSCAN, and GENESCAN.

A person skilled in the art may use the homologous sequences provided herein to find similar sequences in other species and other organisms. Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. To produce such homologues, amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break a-helical structures or 3-sheet structures). Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company). Homologues of a nucleic acid encompass nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.

Polynucleotides and polypeptides with significant homology to the identified genes and polypeptides described in Table 53 above have been identified from the databases using BLAST software using the Blastp and tBlastn algorithms. The query nucleotide and polypeptide sequences are described in Table 43 above (polynucleotide SEQ ID NOs: 1-217, and 218-274; polypeptide SEQ ID NOs:474-689, and 690-731) and the identified homologues are provided in Table 44, below.

TABLE 44
Homologues of the identified genes/polypeptides for increasing abiotic stress
tolerance, water use efficiency, yield, growth rate, vigor, oil content, biomass, growth
rate, nitrogen use efficiency and fertilizer use efficiency of a plant
Hom.
Polyn.Polyp.to
SEQHom. toSEQSEQ%
IDGeneIDIDGlob.
NO:NameCluster nameNO:NO:identityAlgor.
783LAB53brachypodium|09v1|TMPLAF000939T1551047495globlastp
784LAB53leymus|gb166|EG375693551147495globlastp
785LAB53wheat|gb164|BE517987551247494.2globlastp
786LAB53wheat|gb164|BE415276551347493.3globlastp
787LAB53pseudoroegneria|gb167|FF342766551447491.3globlastp
788LAB53oat|10v1|GO594607551547482.1globlastp
789LAB54pseudoroegneria|gb167|FF342146551647582globlastp
790LAB54wheat|gb164|BE428598551747581.1globlastp
791LAB54wheat|gb164|BE428634551847580.1globlastp
792LAB55wheat|gb164|BE499218551947694.3globlastp
793LAB55wheat|gb164|BE415921552047693.9globlastp
794LAB55brachypodium|09v1|DV476207552147689globlastp
795LAB55brachypodium|gb169|BE500339552147689globlastp
796LAB55cenchrus|gb166|EB653436552247684.2globlastp
797LAB55switchgrass|gb167|FE647153552347682.9globlastp
798LAB55rice|gb170|OS10G33250552447682.6globlastp
799LAB55sorghum|gb161.crp|BG051887552547682.6globlastp
800LAB55maize|gb170|AW313258552647681.9globlastp
801LAB55switchgrass|gb167|DN151704552747681.1globlastp
802LAB55brachypodium|gb169|BF485087552847681globlastp
803LAB56wheat|gb164|AF022915552947797.7globlastp
804LAB56brachypodium|09v1|DV471918553047794.1globlastp
805LAB56brachypodium|gb169|AF022915553047794.1globlastp
806LAB56sorghum|09v1|SB09G023310553147791.6globlastp
807LAB56sorghum|gb161.crp|AW037050553147791.6globlastp
808LAB56rice|gb170|OS05G39770553247791globlastp
809LAB56maize|gb170|AI711957553347790.8globlastp
810LAB56switchgrass|gb167|DN141956553447789.6globlastp
811LAB56maize|gb170|AI795602553547788.3globlastp
812LAB58wheat|gb164|BE411978553647899.2globlastp
813LAB58wheat|gb164|BE419135553747898.5globlastp
814LAB58pseudoroegneria|gb167|FF342690553847897.7globlastp
815LAB58leymus|gb166|EG386152553947897.3globlastp
816LAB58leymus|gb166|EG393155554047895.5globlastp
817LAB58rice|gb170|OS04G58280554147885.2globlastp
818LAB58switchgrass|gb167|DN150075554247883.5globlastp
819LAB58switchgrass|gb167|DN150641554347883globlastp
820LAB58sugarcane|gb157.3|CA067894554447881.1globlastp
821LAB58sugarcane|gb157.3|CA131680554547880.7globlastp
822LAB58sugarcane|gb157.3|CA067846554647880.2globlastp
823LAB67oat|10v1|GR325144554748182.3globlastp
824LAB69lolium|10v1|AU246926554848392.3globlastp
825LAB69oat|10v1|GR318171554948391.2globlastp
826LAB69oat|10v1|GR313573555048390.6globlastp
827LAB69barley|10v1|BE437673555148389globlastp
828LAB69barley|gb157SOLEXA|BE437673555148389globlastp
829LAB69wheat|gb164|CA684829555248389globlastp
830LAB69leymus|gb166|EG380193555348388.5globlastp
831LAB69wheat|gb164|BE418188555448387.9globlastp
832LAB69wheat|gb164|BF478406555548387.9globlastp
833LAB69rice|gb170|OS01G60830555648380.2globlastp
834LAB70b_rapa|gb162|CV544933484484100globlastp
835LAB70b_oleracea|gb161|AM386651555748497.3globlastp
836LAB70canola|gb161|CD826649555748497.3globlastp
837LAB70arabidopsis|gb165|AT2G32150555848489.7globlastp
838LAB70arabidopsis_lyrata|09v1|JGIAL014318555948489globlastp
839LAB70radish|gb164|EV550109556048488.51glotblastn
840LAB76cassava|09v1|DV447303556148981.57glotblastn
840LAB72cassava|09v1|DV447303556169481.25glotblastn
841LAB80switchgrass|gb167|FE606158556249081.7globlastp
841LAB92switchgrass|gb167|FE606158556249885.5globlastp
842LAB80barley|gb157SOLEXA|BE438039556349081.3globlastp
843LAB80barley|10v1|BE438039556349081.3globlastp
844LAB81brachypodium|09v1|DV488004556449186.7globlastp
845LAB81brachypodium|gb169|BE421729556449186.7globlastp
846LAB81sorghum|09v1|SB04G035550556549186.3globlastp
847LAB81sorghum|gb161.crp|BG411926556549186.3globlastp
848LAB81maize|gb170|BM266787556649185.6globlastp
849LAB81oat|10v1|GR336389556749184.7globlastp
850LAB82switchgrass|gb167|DN145536556849296.34glotblastn
851LAB82sorghum|09v1|SB04G035630556949295.9globlastp
852LAB82sorghum|gb161.crp|AW360697556949295.9globlastp
853LAB82maize|gb170|AI619207557049295.7globlastp
854LAB82maize|gb170|BM380723557149295.2globlastp
855LAB82brachypodium|09v1|GT811044557249294.8globlastp
856LAB82brachypodium|gb169|BE425568557249294.8globlastp
857LAB82oat|10v1|GR316374557349294.52glotblastn
858LAB82wheat|gb164|BE425568557449293.2globlastp
859LAB82barley|10v1|BQ757459557549290.8globlastp
860LAB82barley|gb157SOLEXA|AV834539557649290.4globlastp
861LAB82brachypodium|09v1|BRADI1G47000557749289.3globlastp
862LAB82maize|gb170|BQ528947557849288.4globlastp
863LAB82sorghum|gb161.crp|BQ528947557949287.7globlastp
864LAB82sorghum|09v1|SB10G005920558049287.5globlastp
865LAB82brachypodium|gb169|CRPBD005242558149285.2globlastp
866LAB82sorghum|09v1|TMPLBM380723T1558249284.7globlastp
867LAB82apple|gb171|CN495624558349284.1globlastp
868LAB82castorbean|09v1|EE256668558449284.1globlastp
869LAB82castorbean|gb160|EE256668558549283.8globlastp
870LAB82chestnut|gb170|SRR006295S0005865558649283.3globlastp
871LAB82melon|gb165|AM716067558749283.1globlastp
872LAB82cucumber|09v1|AM716067558849282.9globlastp
873LAB82bean|gb167|CV532271558949282.6globlastp
874LAB82oak|gb170|DB996638559049282.6globlastp
875LAB82cassava|09v1|CK649453559149282.2globlastp
876LAB82citrus|gb166|BQ624759559249282globlastp
877LAB82lotus|09v1|BI417308559349282globlastp
878LAB82lotus|gb157.2|BI417308559349282globlastp
879LAB82maize|gb170|AW498313559449282globlastp
880LAB82poplar|10v1|BI125519559549282globlastp
881LAB82poplar|gb170|BI125519559549282globlastp
882LAB82soybean|gb168|AW351046559649282globlastp
883LAB82soybean|gb168|BE821006559749281.5globlastp
884LAB82cassava|gb164|CK649453559849281.3globlastp
885LAB82cotton|gb164|AI726355559949281.3globlastp
886LAB82poplar|10v1|BI139040560049281.3globlastp
887LAB82poplar|gb170|BI139040560049281.3globlastp
888LAB82chickpea|09v2|FE668469560149281.28glotblastn
889LAB82arabidopsis_lyrata|09v1|JGIAL025004560249281.1globlastp
890LAB82arabidopsis|gb165|AT4G30440560249281.1globlastp
891LAB82aquilegia|10v1|DR925021560349281globlastp
892LAB82rice|gb170|OS06G08810560449281globlastp
893LAB82strawberry|gb164|CO817269560549281globlastp
894LAB82solanum_phureja|09v1|SPHBG137061560649280.4globlastp
895LAB82spurge|gb161|DV120331560749280.4globlastp
896LAB82nasturtium|10v1|SRR032558S0298847560849280.32glotblastn
897LAB82potato|10v1|BG597853560949280.32glotblastn
898LAB82potato|gb157.2|BI176457560949280.32glotblastn
899LAB82canola|10v1|EE419654561049280.2globlastp
900LAB82canola|10v1|DY023561561149280globlastp
901LAB82canola|gb161|DY023561561149280globlastp
902LAB82canola|gb161|EE419654561249280globlastp
903LAB88rice|gb170|OS09G27750561349693.2globlastp
904LAB88sugarcane|10v1|BQ533005561449686.7globlastp
905LAB88maize|gb170|BE639051561549686.2globlastp
906LAB88sugarcane|gb157.3|BQ533005561649686.1globlastp
907LAB88cenchrus|gb166|EB653325561749686globlastp
908LAB88switchgrass|gb167|FE647922561849685.8globlastp
909LAB88switchgrass|gb167|FL702178561949685.54glotblastn
910LAB88barley|10v1|BG300899562049684.3globlastp
911LAB88barley|gb157SOLEXA|BG300899562049684.3globlastp
912LAB88brachypodium|09v1|DV475195562149683.6globlastp
913LAB88wheat|gb164|BE516906562249683.2globlastp
914LAB88leymus|gb166|EG374982562349683globlastp
915LAB88switchgrass|gb167|FL692984562449682.93glotblastn
916LAB88wheat|gb164|AL823095562549682.9globlastp
917LAB88wheat|gb164|BE498656562649682.9globlastp
918LAB88brachypodium|gb169|BE425783562749682.72glotblastn
919LAB88sorghum|09v1|SB02G026280562849681.7globlastp
920LAB88sorghum|gb161.crp|AW677026562849681.7globlastp
921LAB89sorghum|09v1|SB01G031210562949784.1globlastp
922LAB89maize|gb170|AI745764563049782.8globlastp
923LAB89switchgrass|gb167|DW177254563149780.7globlastp
924LAB92maize|gb170|BE056189563249886.9globlastp
925LAB92maize|gb170|AW054623563349884.21glotblastn
926LAB92cenchrus|gb166|BM084651563449882.2globlastp
927LAB93sugarcane|10v1|CA088623563549996globlastp
928LAB93sugarcane|gb157.3|BQ536470563649995.7globlastp
929LAB93switchgrass|gb167|FE618012563749987.7globlastp
930LAB93maize|gb170|AI783065563849985.9globlastp
931LAB93rice|gb170|OS03G02530563949982globlastp
932LAB93brachypodium|09v1|DV469218564049980.2globlastp
933LAB94sugarcane|10v1|CA078203564150098.9globlastp
934LAB94sugarcane|gb157.3|CA078203564250098.9globlastp
935LAB94maize|gb170|AW216139564350097.2globlastp
936LAB94switchgrass|gb167|DN143081564450097.2globlastp
937LAB94maize|gb170|BG842835564550096.1globlastp
938LAB94switchgrass|gb167|FE624707564650095.73glotblastn
939LAB94cenchrus|gb166|EB655101564750094.7globlastp
940LAB94rice|gb170|OS03G16670564850088.7globlastp
941LAB94brachypodium|09v1|DV472385564950087.9globlastp
942LAB94brachypodium|gb169|BE421885564950087.9globlastp
943LAB94barley|10v1|BE193799565050087.6globlastp
944LAB94barley|gb157SOLEXA|BE421885565050087.6globlastp
945LAB94oat|10v1|GO586906565150087.3globlastp
946LAB94wheat|gb164|BE426589565250087.3globlastp
947LAB94wheat|gb164|BE443811565350087.3globlastp
948LAB94leymus|gb166|EG392526565450087.2globlastp
949LAB94wheat|gb164|AL826955565550086.9globlastp
950LAB94pseudoroegneria|gb167|FF345077565650086.6globlastp
951LAB97maize|gb170|AI964653565750193.5globlastp
952LAB97switchgrass|gb167|FE603346565850193.5globlastp
953LAB97millet|09v1|EVO454PM004428565950189.5globlastp
954LAB97sugarcane|10v1|CA070094566050189.5globlastp
955LAB97switchgrass|gb167|FE622833566150186.2globlastp
956LAB97switchgrass|gb167|FE634485566250183.1globlastp
957LAB97oat|10v1|GO589167566350181.45glotblastn
958LAB97switchgrass|gb167|FE632663566450180.9globlastp
959LAB98sugarcane|gb157.3|CA094179566550290.9globlastp
960LAB98sugarcane|gb157.3|BQ534494566650286.7globlastp
961LAB98sugarcane|10v1|CA075265566750286.7globlastp
962LAB98sugarcane|gb157.3|CA095912566850284.85glotblastn
963LAB98maize|gb170|AA979797566950284.1globlastp
964LAB98sugarcane|gb157.3|CA213458567050283globlastp
965LAB98maize|gb170|DN218642567150281.71glotblastn
966LAB101sugarcane|gb157.3|CA092106567250392.15glotblastn
967LAB101maize|gb170|AW506976567350389.3globlastp
968LAB101switchgrass|gb167|FE623004567450385.2globlastp
969LAB101sugarcane|10v1|CA092106567550383.14glotblastn
970LAB101sorghum|09v1|SB05G020410567650382.3globlastp
971LAB102sugarcane|gb157.3|CA085176567750494.1globlastp
972LAB102sugarcane|10v1|CA085176567850493.41glotblastn
973LAB102sugarcane|gb157.3|CA133383567950492.7globlastp
974LAB102switchgrass|gb167|FL786617568050490.2globlastp
975LAB102maize|gb170|AW330714568150480.6globlastp
976LAB106maize|gb170|CD960060568250585.6globlastp
977LAB106maize|gb170|AI372243568350584.5globlastp
978LAB106switchgrass|gb167|FE605362568450584globlastp
979LAB107maize|gb170|CA399032568550696.1globlastp
980LAB107sugarcane|gb157.3|CA065542568650693.92glotblastn
981LAB107switchgrass|gb167|DN142686568750684.6globlastp
982LAB107sugarcane|10v1|CA065611568850684.5globlastp
983LAB107rice|gb170|OS10G32680568950682.97glotblastn
984LAB109maize|gb170|CD948529569050886globlastp
985LAB113potato|10v1|BQ119431569151093.8globlastp
986LAB113potato|gb157.2|BQ119431569151093.8globlastp
987LAB113eggplant|10v1|FS017035569251090globlastp
988LAB115solanum_phureja|09v1|SPHAI488164569351197.7globlastp
989LAB115potato|gb157.2|BG590998569451196.5glotblastn
990LAB115eggplant|10v1|FS001103569551193.8globlastp
991LAB115pepper|gb171|BM062112569651192.6globlastp
992LAB115petunia|gb171|EB174978569751186.7globlastp
993LAB115tobacco|gb162|EB426842569851183.8globlastp
994LAB116solanum_phureja|09v1|SPHAI637375569951294.8globlastp
995LAB116potato|10v1|BG596647569951294.8globlastp
996LAB116potato|gb157.2|BE923899569951294.8globlastp
997LAB117solanum_phureja|09v1|SPHAI772185570051393globlastp
998LAB117tobacco|gb162|AB073628570151382.2globlastp
999LAB119potato|10v1|BE919943570251491.2globlastp
1000LAB119solanum_phureja|09v1|SPHAI772981570351490.7globlastp
1001LAB119potato|gb157.2|BE919943570451490.7globlastp
1002LAB119pepper|gb171|CA523161570551484.5globlastp
1003LAB120solanum_phureja|09v1|SPHAW218593570651596.7globlastp
1004LAB121solanum_phureja|09v1|SPHAW223810570751698.7globlastp
1005LAB121potato|gb157.2|CN463702570851698.1globlastp
1006LAB121potato|10v1|BI919647570851698.1globlastp
1007LAB121potato|10v1|BG888636570951696.8globlastp
1008LAB121potato|gb157.2|BG888636570951696.8globlastp
1009LAB121potato|gb157.2|CK863276571051696.1globlastp
1010LAB121tomato|gb164|AW216800571151694.2globlastp
1011LAB121eggplant|10v1|FS012746571251693.51glotblastn
1012LAB121potato|10v1|CV476486571351693.5globlastp
1013LAB121solanum_phureja|09v1|SPHAW216800571451693.5globlastp
1014LAB121solanum_phureja|09v1|SPHCRPSP004689571551693.5globlastp
1015LAB121potato|gb157.2|BG887542571651692.9globlastp
1016LAB121tobacco|gb162|AY329069571751692.9globlastp
1017LAB121tomato|gb164|AI774877571851692.9globlastp
1018LAB121solanum_phureja|09v1|SPHAF123255571951692.2globlastp
1019LAB121potato|gb157.2|BG592733571951692.2globlastp
1020LAB121tobacco|gb162|AY329067572051692.2globlastp
1021LAB121potato|10v1|BF053349571951692.2globlastp
1022LAB121solanum_phureja|09v1|SPHCV477365572151691.6globlastp
1023LAB121tomato|gb164|AF123255572251691.6globlastp
1024LAB121pepper|gb171|BM060336572351691.6globlastp
1025LAB121pepper|gb171|CA522343572451691.6globlastp
1026LAB121tomato|09v1|AF123255572251691.6globlastp
1027LAB121eggplant|10v1|FS033633572551690.9globlastp
1028LAB121potato|gb157.2|CV477365572651690.9globlastp
1029LAB121solanum_phureja|09v1|SPHCRPSP039416572751690.26glotblastn
1030LAB121potato|10v1|CN464789572851689.6globlastp
1031LAB121potato|10v1|DN590196572951689.6globlastp
1032LAB121pepper|gb171|CA522586573051689.6globlastp
1033LAB121solanum_phureja|09v1|SPHCN464789573151688.3globlastp
1034LAB121soybean|gb168|AW980952573251683.8globlastp
1035LAB121medicago|gb157.2|BG647589573351683.1globlastp
1036LAB121soybean|gb168|AW567705573451683.1globlastp
1037LAB121papaya|gb165|EX251993573551682.6globlastp
1038LAB121peanut|gb171|EG373080573651682.6globlastp
1039LAB121medicago|09v1|AW683787573751682.5globlastp
1040LAB121medicago|gb157.2|AW683787573751682.5globlastp
1041LAB121medicago|09v1|AW684008573851682.5globlastp
1042LAB121tobacco|gb162|AY329073573951682.5globlastp
1043LAB121cotton|gb164|BE051984574051682.4globlastp
1044LAB121cacao|gb167|CA796637574151682.2globlastp
1045LAB121cotton|gb164|BE054707574251681.9globlastp
1046LAB121cotton|gb164|BF272955574351681.9globlastp
1047LAB121papaya|gb165|EX252008574451681.9globlastp
1048LAB121peanut|gb171|EE123664574551681.9globlastp
1049LAB121soybean|gb168|BG646416574651681.9globlastp
1050LAB121jatropha|09v1|FM890538574751681.6globlastp
1051LAB121papaya|gb165|AY387588574851681.3globlastp
1052LAB121peanut|gb171|EC365300574951681.3globlastp
1053LAB121peanut|gb171|EE126279575051681.3globlastp
1054LAB121soybean|gb168|CA798992575151681.3globlastp
1055LAB121tomato|09v1|DV103969575251681.2globlastp
1056LAB121soybean|gb168|BU548154575351681.2globlastp
1057LAB121spurge|gb161|DV112249575451681.2globlastp
1058LAB121spurge|gb161|DV116657575551681.2globlastp
1059LAB121medicago|09v1|LLBG452648575651681.1globlastp
1060LAB121medicago|gb157.2|BG452648575651681.1globlastp
1061LAB121cassava|09v1|DR084888575751681globlastp
1062LAB121cotton|gb164|BF269213575851680.9globlastp
1063LAB121cotton|gb164|CA993196575951680.9globlastp
1064LAB121cichorium|gb171|EH690049576051680.8globlastp
1065LAB121potato|gb157.2|CV476486576151680.65glotblastn
1066LAB121cotton|gb164|BQ403095576251680.6globlastp
1067LAB121papaya|gb165|EX252058576351680.6globlastp
1068LAB121peanut|gb171|EE127248576451680.6globlastp
1069LAB121soybean|gb168|BM886953576551680.5globlastp
1070LAB121cassava|09v1|DR086686576651680.4globlastp
1071LAB121cassava|gb164|DR084888576751680.4globlastp
1072LAB121cassava|gb164|DR086686576651680.4globlastp
1073LAB121poplar|10v1|BU813549576851680.3globlastp
1074LAB121cacao|gb167|CU476839576951680.3globlastp
1075LAB121cotton|gb164|BQ409689577051680.3globlastp
1076LAB121lettuce|10v1|DW075714577151680.3globlastp
1077LAB121lettuce|gb157.2|DW075714577151680.3globlastp
1078LAB121poplar|10v1|DT507125576851680.3globlastp
1079LAB121poplar|gb170|BU813549576851680.3globlastp
1080LAB121dandelion|gb161|DY824523577251680.1globlastp
1081LAB121soybean|gb168|BQ630709577351680globlastp
1082LAB121cotton|gb164|CA993586577451680globlastp
1083LAB122solanum_phureja|09v1|SPHAW442266577551798.3globlastp
1084LAB122potato|gb157.2|BG889978577551798.3globlastp
1085LAB122potato|10v1|BG888028577551798.3globlastp
1086LAB122potato|gb157.2|BG888028577651796.9globlastp
1087LAB122eggplant|10v1|FS078554577751792.3globlastp
1088LAB122tobacco|gb162|EB430956577851789.2globlastp
1089LAB123solanum_phureja|09v1|SPHAW442830577951887.4globlastp
1090LAB123potato|10v1|BF460376578051887globlastp
1091LAB123potato|gb157.2|BF460376578151887globlastp
1092LAB124potato|10v1|BF154317578251991.9globlastp
1093LAB124potato|gb157.2|BF154317578251991.9globlastp
1094LAB124solanum_phureja|09v1|SPHBG123767578351989globlastp
1095LAB127solanum_phureja|09v1|SPHBG127842578452296.9globlastp
1096LAB127potato|10v1|CK269532578452296.9globlastp
1097LAB127potato|gb157.2|CK269532578552296.5globlastp
1098LAB127eggplant|10v1|FS089521578652293.4globlastp
1099LAB128potato|gb157.2|BE922546578752392.6globlastp
1100LAB128potato|10v1|BE922546578752392.6globlastp
1101LAB128potato|10v1|BQ111829578852392.3globlastp
1102LAB128potato|gb157.2|BG598290578952392.28glotblastn
1103LAB128solanum_phureja|09v1|SPHBG128502579052392globlastp
1104LAB128eggplant|10v1|FS007523579152387.5globlastp
1105LAB128petunia|gb171|CV295560579252385.5globlastp
1106LAB128tobacco|gb162|EH618301579352384.2globlastp
1107LAB129solanum_phureja|09v1|SPHBG129905579452491.2globlastp
1108LAB129pepper|gb171|GD052614579552480glotblastn
1109LAB130solanum_phureja|09v1|SPHBG133230579652589.23glotblastn
1110LAB131potato|10v1|BG890172579752697.3globlastp
1111LAB131solanum_phureja|09v1|SPHBG127715579852696.7globlastp
1112LAB131tobacco|gb162|EB424672579952690.9globlastp
1113LAB131potato|gb157.2|BF460303580052689.4globlastp
1114LAB131solanum_phureja|09v1|SPHAF204790580152689.1globlastp
1115LAB131pepper|gb171|AF082722580252688.8globlastp
1116LAB131potato|gb157.2|BF054105580352688.8globlastp
1117LAB131potato|10v1|BF460303580352688.8globlastp
1118LAB131tomato|gb164|AF204790580452688.4globlastp
1119LAB131tomato|09v1|AF204790580552688.1globlastp
1120LAB131eggplant|10v1|FS008074580652687.2globlastp
1121LAB131tomato|gb164|BG127715580752683.6globlastp
1122LAB131potato|gb157.2|BG890172580852682.4globlastp
1123LAB131citrus|gb166|BQ623443580952681.3globlastp
1124LAB131ipomoea_nil|10v1|BJ558237581052681.2globlastp
1125LAB131arabidopsis_lyrata|09v1|JGIAL032554581152680.9globlastp
1126LAB131monkeyflower|10v1|GO946694581252680.9globlastp
1127LAB131ipomoea|gb157.2|BJ558237581352680.9globlastp
1128LAB131canola|10v1|CN828978581452680.5globlastp
1129LAB131canola|gb161|CN828978581452680.5globlastp
1130LAB131coffea|10v1|DV675045581552680.2globlastp
1131LAB131radish|gb164|EX764030581652680.2globlastp
1132LAB133solanum_phureja|09v1|SPHBG629133581752787globlastp
1133LAB137brachypodium|gb169|BE416704581852885.97glotblastn
1134LAB137brachypodium|09v1|DV479869581952885.2globlastp
1135LAB141barley|gb157SOLEXA|BI953426582053097.34glotblastn
1136LAB141barley|10v1|BI953426582153097.09glotblastn
1137LAB141brachypodium|09v1|DV478705582253092.01glotblastn
1138LAB141brachypodium|gb169|BE591380582353092.01glotblastn
1139LAB141rice|gb170|OS09G27050582453084.99glotblastn
1140LAB141sorghum|09v1|SB02G025930582553084.75glotblastn
1141LAB141sorghum|gb161.crp|AW283712582553084.75glotblastn
1142LAB141maize|gb170|LLCD940999582653082.25glotblastn
1143LAB141sorghum|09v1|SB07G022430582753081.64glotblastn
1143LAB252sorghum|09v1|SB07G022430582760387.6globlastp
1144LAB141sorghum|gb161.crp|AW287657582853081.64glotblastn
1144LAB252sorghum|gb161.crp|AW287657582860387.3globlastp
1145LAB141switchgrass|gb167|FL754019582953080.63glotblastn
1146LAB141maize|gb170|BQ441996583053080.39glotblastn
1146LAB252maize|gb170|BQ441996583060387.2globlastp
1147LAB145sugarcane|10v1|CA288211583153184.62glotblastn
1147LAB167sugarcane|10v1|CA288211583154780.3globlastp
1148LAB145sugarcane|gb157.3|CA288211583153184.62glotblastn
1148LAB167sugarcane|gb157.3|CA288211583154780.3globlastp
1149LAB145sugarcane|10v1|CF571685583253180glotblastn
1149LAB167sugarcane|10v1|CF571685583254786.8globlastp
1150LAB145sugarcane|gb157.3|CF571685583253180glotblastn
1150LAB167sugarcane|gb157.3|CF571685583254786.8globlastp
1151LAB152maize|gb170|AI901645583353392.6globlastp
1152LAB152sugarcane|gb157.3|CA150670583453392.57glotblastn
1153LAB152switchgrass|gb167|FL692374583553382.7globlastp
1154LAB152switchgrass|gb167|FL713549583653381globlastp
1155LAB153sugarcane|10v1|CA123230583753497.6globlastp
1156LAB153sugarcane|gb157.3|CA123230583753497.6globlastp
1157LAB153maize|gb170|T18415583853492.5globlastp
1158LAB153switchgrass|gb167|FE637514583953490.6globlastp
1159LAB153switchgrass|gb167|FL789468584053489.4globlastp
1160LAB153cenchrus|gb166|EB655013584153485.4globlastp
1161LAB153brachypodium|09v1|DV480172584253483.1globlastp
1162LAB153brachypodium|gb169|BE421446584253483.1globlastp
1163LAB153rice|gb170|OS02G54060584353482.7globlastp
1164LAB154maize|gb170|AW066925584453594.1globlastp
1165LAB154barley|10v1|AV833850584553590.2globlastp
1166LAB154barley|10v1|BI958438584653590.2globlastp
1167LAB154brachypodium|09v1|DV469301584753589.9globlastp
1168LAB154brachypodium|gb169|BE637762584753589.9globlastp
1169LAB154wheat|gb164|BE515523584853589.9globlastp
1170LAB154wheat|gb164|BF483856584953589.6globlastp
1171LAB154wheat|gb164|CA660347585053589.3globlastp
1172LAB154oat|10v1|GR356133585153588.7globlastp
1173LAB154rice|gb170|OS04G55710585253588.7globlastp
1174LAB154oat|10v1|GR358853585353587.8globlastp
1175LAB154barley|gb157SOLEXA|AL499742585453581.6globlastp
1176LAB159sugarcane|10v1|DN195185585553996.6globlastp
1177LAB159maize|gb170|BM340195585653994.8globlastp
1178LAB159switchgrass|gb167|DN148099585753992.4globlastp
1179LAB159rice|gb170|OS07G04990585853988.5globlastp
1180LAB159wheat|gb164|BE605214585953985.4globlastp
1181LAB159leymus|gb166|EG386154586053985.2globlastp
1182LAB159barley|10v1|BI951567586153984.9globlastp
1183LAB159barley|gb157SOLEXA|BI951567586153984.9globlastp
1184LAB159wheat|gb164|BE604066586253984.9globlastp
1185LAB159oat|10v1|CN817195586353983.3globlastp
1186LAB159fescue|gb161|DT679429586453983.3globlastp
1187LAB159brachypodium|09v1|DV479518586553982.9globlastp
1188LAB159brachypodium|gb169|BE704541586553982.9globlastp
1189LAB161maize|gb170|AI622212586654195.5globlastp
1190LAB161switchgrass|gb167|DT948963586754192.42glotblastn
1191LAB161rice|gb170|OS09G18320586854181.6globlastp
1192LAB162maize|gb170|AI586902586954293.7globlastp
1193LAB162switchgrass|gb167|FE658082587054291.9globlastp
1194LAB162rice|gb170|OS06G04610587154286.2globlastp
1195LAB162oat|10v1|CN819671587254284.3globlastp
1196LAB162leymus|gb166|EG384069587354283.6globlastp
1197LAB162wheat|gb164|BF201230587454283.18glotblastn
1198LAB162brachypodium|09v1|GT776617587554282.5globlastp
1199LAB162wheat|gb164|BG606378587654282.16glotblastn
1200LAB164brachypodium|gb169|BE445505587754482.2globlastp
1201LAB165sorghum|09v1|SB04G027460587854597.53glotblastn
1202LAB165maize|gb170|CD936465587954591.36glotblastn
1203LAB165rice|gb170|OS02G51910588054584.9globlastp
1204LAB166maize|gb170|AI444676588154691.9globlastp
1205LAB166rice|gb170|OS10G36390588254682.2globlastp
1206LAB167sugarcane|gb157.3|CA070500588354787.84glotblastn
1207LAB167sorghum|09v1|SB09G001020588454787.8globlastp
1208LAB167sorghum|gb161.crp|AI723995588454787.8globlastp
1209LAB167wheat|gb164|CA484885588554786.5globlastp
1210LAB167switchgrass|gb167|FL825143588654783.8globlastp
1211LAB167sugarcane|10v1|BQ534981588754783.6globlastp
1212LAB167sugarcane|gb157.3|BQ534981588754783.6globlastp
1213LAB167sugarcane|10v1|CO373473588854782.43glotblastn
1214LAB167sugarcane|gb157.3|CO373473588854782.43glotblastn
1215LAB167sugarcane|10v1|BQ534583588954782.4globlastp
1216LAB167sugarcane|gb157.3|BQ534583588954782.4globlastp
1217LAB167maize|gb170|LLAW202534589054782.2globlastp
1218LAB167maize|gb170|T23379589054782.2globlastp
1219LAB167sugarcane|10v1|CA277083589154780.8globlastp
1220LAB167sugarcane|10v1|CA297188589254780globlastp
1221LAB169maize|gb170|AW053133589354897.5globlastp
1222LAB169switchgrass|gb167|FE613776589454895.9globlastp
1223LAB169rice|gb170|OS04G44890589554891.6globlastp
1224LAB169brachypodium|09v1|DV487916589654889.1globlastp
1225LAB169brachypodium|gb169|BF202199589654889.1globlastp
1226LAB169barley|10v1|BI955502589754885.9globlastp
1227LAB169wheat|gb164|BF202199589854885globlastp
1228LAB169castorbean|09v1|XM002528859589954882.81glotblastn
1229LAB169coffea|10v1|DV691567590054880.94glotblastn
1230LAB169tomato|09v1|BG135211590154880.62glotblastn
1231LAB169cassava|09v1|JGICASSAVA19698M1590254880.31glotblastn
1232LAB169solanum_phureja|09v1|SPHBG135211590354880glotblastn
1233LAB169potato|gb157.2|BI405380590454880glotblastn
1234LAB170sugarcane|10v1|BU103703590554997.1globlastp
1235LAB170sugarcane|gb157.3|BU103703590654997globlastp
1236LAB170maize|gb170|AW066983590754994.1globlastp
1237LAB170switchgrass|gb167|FL704262590854994.1globlastp
1238LAB170barley|10v1|AV833506590954988.8globlastp
1239LAB170barley|gb157SOLEXA|AV833506590954988.8globlastp
1240LAB170rice|gb170|OS01G62900591054988.3globlastp
1241LAB170brachypodium|09v1|DV484814591154987.7globlastp
1242LAB170brachypodium|gb169|AF022914591154987.7globlastp
1243LAB170wheat|gb164|BE403675591254984.5globlastp
1244LAB170millet|09v1|EVO454PM003201591354982.2globlastp
1245LAB171maize|gb170|AI941956591455095.6globlastp
1246LAB171switchgrass|gb167|FL777596591555089.9globlastp
1246LAB179switchgrass|gb167|FL777596591555781.1globlastp
1247LAB171millet|09v1|EVO454PM014599591655086.3globlastp
1248LAB171switchgrass|gb167|FL724893591755086.29glotblastn
1249LAB171brachypodium|09v1|GT862474591855083.1globlastp
1249LAB179brachypodium|09v1|GT862474591855786.7globlastp
1250LAB171oat|10v1|GO596792591955081globlastp
1250LAB179oat|10v1|GO596792591955787.6globlastp
1251LAB172sugarcane|gb157.3|CA081142592055197.3globlastp
1252LAB172sugarcane|10v1|CA081142592155197globlastp
1253LAB172maize|gb170|AW360590592255194.4globlastp
1254LAB172brachypodium|09v1|DV470791592355180.7globlastp
1255LAB172brachypodium|gb169|BQ801920592355180.7globlastp
1256LAB172barley|gb157SOLEXA|AL508671592455180.5globlastp
1257LAB172pseudoroegneria|gb167|FF357868592555180.5globlastp
1258LAB172wheat|gb164|BE428307592655180.4glotblastn
1259LAB172rice|gb170|OS10G37830592755180.1globlastp
1260LAB178solanum_phureja|09v1|SPHAI490504592855691globlastp
1261LAB178solanum_phureja|09v1|SPHAI899607592955690.3globlastp
1262LAB178solanum_phureja|09v1|SPHAW030648593055686.3globlastp
1263LAB178solanum_phureja|09v1|SPHFS190963593155682.95glotblastn
1264LAB181arabidopsis_lyrata|09v1|JGIAL003163593255890.7globlastp
1265LAB182arabidopsis_lyrata|09v1|JGIAL004937593355991.9globlastp
1266LAB183arabidopsis_lyrata|09v1|JGIAL012211593456097.2globlastp
1267LAB185arabidopsis_lyrata|09v1|JGIAL013760593556192.1globlastp
1268LAB185canola|10v1|DW999895593656181.4globlastp
1269LAB186arabidopsis_lyrata|09v1|JGIAL015590593756297.5globlastp
1270LAB186arabidopsis_lyrata|09v1|JGIAL019152593856283.3globlastp
1271LAB186arabidopsis|gb165|AT3G58510593956283.3globlastp
1272LAB187arabidopsis_lyrata|09v1|JGIAL009567594056394.1globlastp
1273LAB187canola|gb161|H74489594156381.2globlastp
1274LAB187canola|10v1|CD824785594256381.2globlastp
1275LAB187canola|gb161|CD824785594356380.7globlastp
1276LAB187b_rapa|gb162|BG543902594456380.3globlastp
1277LAB187canola|10v1|CD832364594556380.2globlastp
1278LAB187canola|gb161|CD832364594556380.2globlastp
1279LAB188arabidopsis_lyrata|09v1|JGIAL017529594656496.3globlastp
1280LAB188canola|10v1|CN829728594756493.1globlastp
1281LAB188canola|10v1|DQ388372594856492.8globlastp
1282LAB188canola|gb161|DQ388372594956491.4globlastp
1283LAB188b_rapa|gb162|DN965719595056487.6globlastp
1284LAB189arabidopsis_lyrata|09v1|JGIAL019157595156597.7globlastp
1285LAB191arabidopsis_lyrata|09v1|JGIAL028028595256797.9globlastp
1286LAB191arabidopsis_lyrata|09v1|JGIAL028027595356791.05glotblastn
1287LAB191canola|10v1|H07767595456790.62glotblastn
1288LAB191canola|gb161|EV061394595556790.1globlastp
1289LAB191canola|gb161|EV215362595656790.1globlastp
1290LAB191radish|gb164|EV526745595756789.6globlastp
1291LAB191b_rapa|gb162|EX068278595856789.5globlastp
1292LAB191radish|gb164|EX746054595956788globlastp
1293LAB191radish|gb164|EV543483596056784.21glotblastn
1294LAB195brachypodium|09v1|GT845006596156990.81glotblastn
1295LAB195oat|10v1|GO588363596256988.24glotblastn
1296LAB195maize|gb170|AI670624596356984.56glotblastn
1297LAB195rice|gb170|OS09G34910596456983.82glotblastn
1298LAB195sorghum|09v1|SB02G030210596556983.82glotblastn
1299LAB195sorghum|gb161.crp|AW282915596556983.82glotblastn
1300LAB195maize|gb170|AW052938596656983.46glotblastn
1301LAB195sugarcane|10v1|CA081151596756983.46glotblastn
1302LAB195sugarcane|gb157.3|CA081151596756983.46glotblastn
1303LAB195switchgrass|gb167|FE630684596856983.46glotblastn
1304LAB197wheat|gb164|BE402477596957096.31glotblastn
1305LAB197pseudoroegneria|gb167|FF344208597057095.1globlastp
1306LAB197oat|10v1|GR346117597157086.8globlastp
1307LAB197wheat|gb164|AL818272597257084.2globlastp
1308LAB197brachypodium|09v1|DV469420597357082.7globlastp
1309LAB197wheat|gb164|BE427619597457080.3globlastp
1310LAB204brachypodium|09v1|DV475244571571100globlastp
1311LAB204brachypodium|gb169|BE415626571571100globlastp
1312LAB204wheat|gb164|AL829402571571100globlastp
1313LAB204wheat|gb164|BE415626571571100globlastp
1314LAB204wheat|gb164|BE4157795975571100glotblastn
1315LAB204wheat|gb164|BE4930375976571100glotblastn
1316LAB204wheat|gb164|CA6109365977571100glotblastn
1317LAB204leymus|gb166|AB161676597857196.4globlastp
1318LAB204rice|gb170|OS05G04700597957196.4globlastp
1319LAB204wheat|gb164|CA502718597957196.4globlastp
1320LAB204pseudoroegneria|gb167|FF340236598057194.5globlastp
1321LAB204nasturtium|10v1|GH164512598157192.7globlastp
1322LAB204barley|gb157SOLEXA|DN182019598257190.9globlastp
1323LAB204leymus|gb166|AB161677598357190.9globlastp
1324LAB204banana|gb167|DN238253598457189.5globlastp
1325LAB204banana|gb167|FL657642598457189.5globlastp
1326LAB204orobanche|10v1|SRR023189S0012323598557189.3globlastp
1327LAB204flax|09v1|CV478078598657189.1globlastp
1328LAB204millet|09v1|EVO454PM008364598757189.1globlastp
1329LAB204oat|10v1|GR359931598857189.1globlastp
1330LAB204flax|gb157.3|CV478078598657189.1globlastp
1331LAB204switchgrass|gb167|DN145053598957189.1globlastp
1332LAB204ginger|gb164|DY355348599057187.7globlastp
1333LAB204poplar|10v1|BI069568599157187.7globlastp
1334LAB204poplar|gb170|BI069568599257187.7globlastp
1335LAB204sugarcane|gb157.3|BQ535255599357187.7globlastp
1336LAB204lovegrass|gb167|DN481436599457187.5globlastp
1337LAB204sugarcane|gb157.3|BQ534432599557187.5globlastp
1338LAB204sugarcane|gb157.3|BQ534680599557187.5globlastp
1339LAB204sugarcane|10v1|BQ535088599557187.5globlastp
1340LAB204sugarcane|gb157.3|BQ535088599557187.5globlastp
1341LAB204sugarcane|gb157.3|CA096029599557187.5globlastp
1342LAB204sugarcane|gb157.3|CA286362599557187.5globlastp
1343LAB204sugarcane|gb157.3|CF576753599657187.5globlastp
1344LAB204switchgrass|gb167|DN150647599757187.5globlastp
1345LAB204switchgrass|gb167|FL772644599857187.5globlastp
1346LAB204sugarcane|10v1|BQ534432599557187.5globlastp
1347LAB204sugarcane|10v1|BQ534516599557187.5globlastp
1348LAB204triphysaria|10v1|SRR023500S0003316599957187.3globlastp
1349LAB204triphysaria|10v1|SRR023500S0037696599957187.3globlastp
1350LAB204rye|gb164|BF145228600057187.3globlastp
1351LAB204spurge|gb161|DV123416600157187.3globlastp
1352LAB204canola|gb161|ES902627600257187.27glotblastn
1353LAB204cryptomeria|gb166|BJ937299600357187.27glotblastn
1354LAB204spurge|gb161|DV112180600457187.27glotblastn
1355LAB204banana|gb167|DN239184600557186globlastp
1356LAB204eucalyptus|gb166|CD668637600657185.5globlastp
1357LAB204liriodendron|gb166|CK747388600757185.5globlastp
1358LAB204lotus|09v1|CB828766600857185.5globlastp
1359LAB204lotus|gb157.2|CB828766600857185.5globlastp
1360LAB204medicago|09v1|BE323170600957185.5globlastp
1361LAB204medicago|gb157.2|BE323170600957185.5globlastp
1362LAB204spruce|gb162|CO215808601057185.5globlastp
1363LAB204cryptomeria|gb166|BB940612601157185.45glotblastn
1364LAB204cryptomeria|gb166|BP173716601257185.45glotblastn
1365LAB204spruce|gb162|CO241929601357185.45glotblastn
1366LAB204spruce|gb162|EX402169601457185.45glotblastn
1367LAB204citrus|gb166|CB610761601557184.5globlastp
1368LAB204citrus|gb166|CX635312601557184.5globlastp
1369LAB204maize|gb170|LLT23394601657184.5globlastp
1370LAB204maize|gb170|T14760601657184.5globlastp
1371LAB204banana|gb167|FF560276601757184.2globlastp
1372LAB204liquorice|gb171|FS240532601857184.2globlastp
1373LAB204salvia|10v1|CV163287601957183.9globlastp
1374LAB204maize|gb170|AI396387602057183.9globlastp
1375LAB204millet|09v1|AY823549602157183.9globlastp
1376LAB204millet|gb161|AY823549602157183.9globlastp
1377LAB204wheat|gb164|CA486803602257183.9globlastp
1378LAB204monkeyflower|10v1|SRR037228S0018011602357183.64glotblastn
1379LAB204nasturtium|10v1|SRR032558S0000444602457183.64glotblastn
1380LAB204lettuce|gb157.2|DW048006602557183.64glotblastn
1381LAB204peanut|gb171|CX128241602657183.64glotblastn
1382LAB204spruce|gb162|CO222473602757183.64glotblastn
1383LAB204spruce|gb162|DR510117602857183.64glotblastn
1384LAB204wheat|gb164|CA484233602957183.64glotblastn
1385LAB204cichorium|gb171|EL36959557183.64glotblastn
1386LAB204chickpea|09v2|FE672441603057183.6globlastp
1387LAB204banana|gb167|FF558319603157183.6globlastp
1388LAB204poplar|10v1|BI122249603257183.6globlastp
1389LAB204poplar|gb170|BI122249603257183.6globlastp
1390LAB204poplar|10v1|BU811582603357183.6globlastp
1391LAB204poplar|gb170|BU811582603357183.6globlastp
1392LAB204lettuce|10v1|DW048006603457183.6globlastp
1393LAB204cucumber|09v1|EB715890603557182.5globlastp
1394LAB204barley|gb157SOLEXA|BE413132603657182.5globlastp
1395LAB204barley|10v1|BE413132603657182.5globlastp
1396LAB204barley|gb157SOLEXA|BF257032603657182.5globlastp
1397LAB204bean|gb167|CV540757603757182.5globlastp
1398LAB204beech|gb170|SRR006293S0011201603857182.5globlastp
1399LAB204chestnut|gb170|SRR006295S0007559603957182.5globlastp
1400LAB204chestnut|gb170|SRR006295S0017671603957182.5globlastp
1401LAB204eucalyptus|gb166|CD668872604057182.5globlastp
1402LAB204kiwi|gb166|FG437405604157182.5globlastp
1403LAB204oak|gb170|CU639520603957182.5globlastp
1404LAB204sorghum|09v1|SB09G003060604257182.5globlastp
1405LAB204sorghum|gb161.crp|CD231944604257182.5globlastp
1406LAB204soybean|gb168|BE323170604357182.5globlastp
1407LAB204sugarcane|gb157.3|BQ536812604457182.5globlastp
1408LAB204walnuts|gb166|EL894694604557182.5globlastp
1409LAB204wheat|gb164|BE418414603657182.5globlastp
1410LAB204wheat|gb164|BE637945604657182.46glotblastn
1411LAB204wheat|gb164|BE425311604757182.46glotblastn
1412LAB204flax|09v1|EU830057604857182.1globlastp
1413LAB204rhizophora|10v1|SRR005792S0007548604957182.1globlastp
1414LAB204salvia|10v1|SRR014553S0009878605057182.1globlastp
1415LAB204bruguiera|gb166|BP940238605157182.1globlastp
1416LAB204catharanthus|gb166|EG560916605257182.1globlastp
1417LAB204cenchrus|gb166|BM084728605357182.1globlastp
1418LAB204millet|09v1|CD724750605457182.1globlastp
1419LAB204millet|gb161|CD726612605457182.1globlastp
1420LAB204rice|gb170|OS07G44180605557182.1globlastp
1421LAB204sugarcane|10v1|BQ537279605657182.1globlastp
1422LAB204sugarcane|gb157.3|BQ537279605657182.1globlastp
1423LAB204sugarcane|10v1|CA155635605657182.1globlastp
1424LAB204sugarcane|gb157.3|CA155635605657182.1globlastp
1425LAB204switchgrass|gb167|DN143186605757182.1globlastp
1426LAB204switchgrass|gb167|DN151023605757182.1globlastp
1427LAB204switchgrass|gb167|FE629432605757182.1globlastp
1428LAB204switchgrass|gb167|FL986616605857182.1globlastp
1429LAB204artemisia|10v1|ES582125605957181.82glotblastn
1430LAB204sugarcane|10v1|DV731065606057181.82glotblastn
1431LAB204artemisia|gb164|ES582125606157181.82glotblastn
1432LAB204fescue|gb161|DT678660606257181.82glotblastn
1433LAB204maize|gb170|AI855258606357181.82glotblastn
1434LAB204maize|gb170|CD990565606057181.82glotblastn
1435LAB204pine|10v1|BG319022606457181.82glotblastn
1436LAB204pine|gb157.2|BG319022606457181.82glotblastn
1437LAB204rice|gb170|CB678398606557181.82glotblastn
1438LAB204sorghum|09v1|SB03G011700606057181.82glotblastn
1439LAB204sorghum|gb161.crp|AW564566606057181.82glotblastn
1440LAB204strawberry|gb164|CO378683606657181.82glotblastn
1441LAB204wheat|gb164|CA618246606757181.82glotblastn
1442LAB204artemisia|10v1|GW331462606857181.8globlastp
1443LAB204ginseng|10v1|GR873554606957181.8globlastp
1444LAB204sorghum|09v1|SB09G003050607057181.8globlastp
1445LAB204clover|gb162|BB909236607157181.8globlastp
1446LAB204fescue|gb161|DT679002607257181.8globlastp
1447LAB204lettuce|10v1|DW078717607357181.8globlastp
1448LAB204lettuce|gb157.2|DW078717607357181.8globlastp
1449LAB204sugarcane|gb157.3|BQ534516607057181.8globlastp
1450LAB204sugarcane|10v1|BQ535033607057181.8globlastp
1451LAB204sugarcane|gb157.3|BQ534594607057181.8globlastp
1452LAB204walnuts|gb166|CB303483607457181.4globlastp
1453LAB204walnuts|gb166|EL895529607457181.4globlastp
1454LAB204heritiera|10v1|SRR005794S0002184607557180.7globlastp
1455LAB204jatropha|09v1|GO246525607657180.7globlastp
1456LAB204oat|10v1|CN821388607757180.7globlastp
1457LAB204barley|gb157SOLEXA|BF253394607857180.7globlastp
1458LAB204brachypodium|09v1|DV482704607757180.7globlastp
1459LAB204brachypodium|gb169|BE413132607757180.7globlastp
1460LAB204cassava|09v1|DR086796607957180.7globlastp
1461LAB204cassava|gb164|DR086796607957180.7globlastp
1462LAB204citrus|gb166|CB290651608057180.7glotblastn
1463LAB204cotton|gb164|BE055465608157180.7glotblastn
1464LAB204cowpea|gb166|FF390328608257180.7globlastp
1465LAB204cowpea|gb166|FG844338608357180.7globlastp
1466LAB204melon|gb165|EB715890608457180.7globlastp
1467LAB204oat|10v1|CN816104607757180.7globlastp
1468LAB204oat|gb164|CN816104608557180.7glotblastn
1469LAB204rye|gb164|BE587105608657180.7glotblastn
1470LAB204gerbera|09v1|AJ750828608757180.4globlastp
1471LAB204ginseng|10v1|GR874639608857180.4globlastp
1472LAB204tragopogon|10v1|SRR020205S0037758608957180.4globlastp
1473LAB204castorbean|09v1|EE258813609057180.4globlastp
1474LAB204castorbean|gb160|EE258813609057180.4globlastp
1475LAB204nuphar|gb166|CD475184609157180.4globlastp
1476LAB204peanut|gb171|CD037685609257180.4globlastp
1477LAB204switchgrass|gb167|FL876572609357180.4globlastp
1478LAB204medicago|09v1|LLCO512569609457180globlastp
1479LAB204pine|10v1|BF778634609557180glotblastn
1480LAB204b_oleracea|gb161|AM059255609657180globlastp
1481LAB204centaurea|gb166|EH738262609757180globlastp
1482LAB204chestnut|gb170|SRR006296S0016630609857180glotblastn
1483LAB204lettuce|gb157.2|DW121013609957180globlastp
1484LAB204lettuce|10v1|DW146833609757180globlastp
1485LAB204lettuce|gb157.2|DW146833609757180globlastp
1486LAB204lovegrass|gb167|DN481408610057180glotblastn
1487LAB204lovegrass|gb167|EH186434610157180glotblastn
1488LAB204maize|gb170|LLCD940855610257180glotblastn
1489LAB204pine|gb157.2|BF778634610357180glotblastn
1490LAB204pine|10v1|CR393204610457180glotblastn
1491LAB204pine|gb157.2|CR393204610457180glotblastn
1492LAB204prunus|gb167|BU040273610557180glotblastn
1493LAB204prunus|gb167|CB819364610657180glotblastn
1494LAB204safflower|gb162|EL402061610757180glotblastn
1495LAB204spruce|gb162|CO490368610857180globlastp
1496LAB204sunflower|gb162|CD853978610957180glotblastn
1497LAB204sunflower|gb162|DY954887610957180glotblastn
1498LAB204sunflower|gb162|EE655129611057180glotblastn
1499LAB204switchgrass|gb167|FE644351611157180glotblastn
1500LAB210barley|10v1|BE412504611257484.1globlastp
1501LAB210wheat|gb164|BQ788771611357482.2globlastp
1502LAB210oat|10v1|GO587376611457480.7globlastp
1503LAB211pseudoroegneria|gb167|FF348619611557595.6globlastp
1504LAB211wheat|gb164|BE413647611657595.1globlastp
1505LAB211brachypodium|09v1|GT809811611757586.6globlastp
1506LAB211brachypodium|gb169|BE413647611857586.1glotblastn
1507LAB211switchgrass|gb167|FE632800611957584.8globlastp
1508LAB211cenchrus|gb166|EB654815612057584.7globlastp
1509LAB211sorghum|09v1|SB09G022810612157584.7globlastp
1510LAB211maize|gb170|BM332575612257584.2globlastp
1511LAB211sorghum|gb161.crp|BE356560612357584.2globlastp
1512LAB211maize|gb170|T15302612457583.7globlastp
1513LAB211rice|gb170|OS05G38820612557581.58glotblastn
1514LAB212leymus|gb166|EG375667612657694.2globlastp
1515LAB212wheat|gb164|BE515978612757694globlastp
1516LAB212pseudoroegneria|gb167|FF352847612857693.5globlastp
1517LAB212wheat|gb164|BE429733612957692.7globlastp
1518LAB212wheat|gb164|BE427710613057688.9globlastp
1519LAB212brachypodium|09v1|DV478766613157688.3globlastp
1520LAB212brachypodium|gb169|BG418029613257688globlastp
1521LAB212switchgrass|gb167|FE619498613357685.2globlastp
1522LAB212switchgrass|gb167|DN142544613457684.6globlastp
1523LAB212maize|gb170|AW066846613557682.9globlastp
1524LAB212sorghum|gb161.crp|AW679903613657682.7globlastp
1525LAB212sorghum|09v1|SB10G027540613657682.7globlastp
1526LAB212sugarcane|10v1|CA110713613757681.9globlastp
1527LAB212sugarcane|gb157.3|CA110713613757681.9globlastp
1528LAB217cotton|gb164|AI725612613857882.6globlastp
1529LAB217clover|gb162|BB907588613957882.58glotblastn
1530LAB217papaya|gb165|EX275064614057882.58glotblastn
1531LAB217bean|gb167|CA902400614157882.1globlastp
1532LAB217medicago|09v1|AW775623614257882.02glotblastn
1533LAB217chestnut|gb170|SRR006295S0010554614357881.46glotblastn
1534LAB217melon|gb165|AM714820614457881.46glotblastn
1535LAB217poplar|gb170|CV243355614557881.11glotblastn
1536LAB217cucumber|09v1|CO995825614657880.9glotblastn
1537LAB217prunus|gb167|AJ823322614757880.9glotblastn
1538LAB217poplar|10v1|CV243355614857880.7globlastp
1539LAB217spurge|gb161|DV112896614957880.56glotblastn
1540LAB217lotus|09v1|AV420653615057880.45glotblastn
1541LAB217medicago|gb157.2|AW775623615157880.4globlastp
1542LAB217soybean|gb168|BI970816615257880.4globlastp
1543LAB217soybean|gb168|CA902400615357880.4globlastp
1544LAB217tobacco|gb162|EB444355615457880.22glotblastn
1545LAB220switchgrass|gb167|DN147462615558080.6globlastp
1546LAB225sugarcane|10v1|BQ535168615658486.4globlastp
1547LAB225sorghum|09v1|SB03G033040615758486.1globlastp
1548LAB225sorghum|gb161.crp|AW331066615758486.1globlastp
1549LAB225millet|09v1|EVO454PM001578615858485.8globlastp
1550LAB225switchgrass|gb167|DN144268615958485.4globlastp
1551LAB225switchgrass|gb167|FE640178616058485.4globlastp
1552LAB225maize|gb170|T15331616158485.1globlastp
1553LAB225brachypodium|09v1|DV469255616258482.5globlastp
1554LAB225wheat|gb164|BE406587616358482.1globlastp
1555LAB225brachypodium|gb169|BE406587616458481.46glotblastn
1556LAB225wheat|gb164|BE497128616558480.8globlastp
1557LAB225barley|10v1|BI950307616658480.5globlastp
1558LAB225barley|gb157SOLEXA|AL505025616658480.5globlastp
1559LAB228brachypodium|09v1|DV470077616758587.9globlastp
1560LAB228sorghum|gb161.crp|BM325428616858587.8globlastp
1561LAB228maize|gb170|AW267639616958587.6globlastp
1562LAB228switchgrass|gb167|FE615121617058587.02glotblastn
1563LAB228barley|gb157SOLEXA|BE412583617158585.6globlastp
1564LAB228oat|10v1|CN818930617258585.2globlastp
1565LAB231sorghum|09v1|SB03G043730617358890.1globlastp
1566LAB231sorghum|gb161.crp|AW677963617358890.1globlastp
1567LAB231brachypodium|09v1|GT814580617458888.4globlastp
1568LAB231maize|gb170|BE638867617558888.3globlastp
1569LAB231barley|10v1|AV834675617658887.6globlastp
1570LAB231brachypodium|gb169|BE591738617758887.33glotblastn
1571LAB231maize|gb170|AW171971617858886.3globlastp
1572LAB233brachypodium|09v1|TMPLOS01G68810T1617959099.4globlastp
1573LAB233brachypodium|09v1|GT772015618059082.3globlastp
1574LAB233brachypodium|09v1|DV478709618159082.01glotblastn
1575LAB233sorghum|09v1|SB03G043780618259080globlastp
1576LAB235oat|10v1|BE439122618359283.8globlastp
1577LAB235wheat|gb164|BE419355618459283.7globlastp
1578LAB235barley|10v1|BI946772618559283.5globlastp
1579LAB235barley|gb157SOLEXA|BI946772618559283.5globlastp
1580LAB235switchgrass|gb167|DN146646618659282.8globlastp
1581LAB235brachypodium|09v1|DV486036618759282.7globlastp
1582LAB235sorghum|09v1|SB03G043810618859281.9globlastp
1583LAB235sorghum|gb161.crp|AW745048618859281.9globlastp
1584LAB235sugarcane|10v1|CA081661618959281.2globlastp
1585LAB235sugarcane|gb157.3|CA081661619059281.2globlastp
1586LAB235maize|gb170|AI372227619159280glotblastn
1587LAB237brachypodium|09v1|DV474202619259486.8globlastp
1588LAB237sorghum|09v1|SB04G021410619359485.3globlastp
1589LAB237maize|gb170|AW787360619459482.2globlastp
1590LAB237sorghum|gb161.crp|BE345738619559482.1globlastp
1591LAB237oat|10v1|CN816886619659481.2globlastp
1592LAB238brachypodium|09v1|GT767992619759591.7globlastp
1593LAB238brachypodium|gb169|BE406876619759591.7globlastp
1594LAB238fescue|gb161|DT675438619859590.5globlastp
1595LAB238leymus|gb166|EG393183619959590.2globlastp
1596LAB238maize|gb170|AI438615620059589.8globlastp
1597LAB238sugarcane|10v1|CA087915620159589.8globlastp
1598LAB238sorghum|09v1|SB04G027590620259589.5globlastp
1599LAB238sorghum|gb161.crp|AI920758620259589.5globlastp
1600LAB238sugarcane|gb157.3|CA141903620359589.5globlastp
1601LAB238pseudoroegneria|gb167|FF346705620459588.6globlastp
1602LAB238barley|gb157SOLEXA|BE412737620559587.9globlastp
1603LAB238oat|10v1|CN820263620659587.6globlastp
1604LAB238wheat|gb164|BE415762620759587.3globlastp
1605LAB238wheat|gb164|BE406876620859586.7globlastp
1606LAB238barley|10v1|BE412737620959585.99glotblastn
1607LAB238brachypodium|09v1|GT792040621059584.1globlastp
1608LAB238brachypodium|gb169|BE445674621059584.1globlastp
1609LAB238sugarcane|gb157.3|BQ536599621159584.1globlastp
1610LAB238sorghum|gb161.crp|AW091473621259584.1globlastp
1611LAB238rice|gb170|OS06G11800621359583.9globlastp
1612LAB238sorghum|09v1|SB10G007760621459583.8globlastp
1613LAB238maize|gb170|AW091473621559583.4globlastp
1614LAB238switchgrass|gb167|DN144426621659583.1globlastp
1615LAB238oat|10v1|GR344417621759581.2globlastp
1616LAB238barley|10v1|BI947155621859581.2globlastp
1617LAB238barley|gb157SOLEXA|AL450690621859581.2globlastp
1618LAB238pseudoroegneria|gb167|FF341263621959581.2globlastp
1619LAB238leymus|gb166|EG374932622059580.3globlastp
1620LAB240switchgrass|gb167|DN142418622159685.5globlastp
1621LAB240sorghum|09v1|SB01G047500622259684.5globlastp
1622LAB240sorghum|gb161.crp|AW621098622259684.5globlastp
1623LAB240maize|gb170|AW061639622359684globlastp
1624LAB240wheat|gb164|BE498578622459680.2globlastp
1625LAB252brachypodium|09v1|DV469506622560389.6globlastp
1626LAB252brachypodium|gb169|DT715392622660385globlastp
1627LAB254brachypodium|gb169|CA679165622760584.3globlastp
1628LAB254rice|gb170|OS09G27930622860583globlastp
1629LAB254barley|gb157SOLEXA|BI948415622960582.14glotblastn
1630LAB254wheat|gb164|CJ655025623060582.1globlastp
1631LAB254barley|gb157SOLEXA|BI952431623160581.43glotblastn
1632LAB254barley|10v1|BI948415623260581globlastp
1633LAB254brachypodium|09v1|GT778632623360580.85glotblastn
1634LAB254sorghum|09v1|SB02G032360623460580.4globlastp
1635LAB254wheat|gb164|AL830764623560580.14glotblastn
1636LAB254rice|gb170|OS07G30640623660580globlastp
1637LAB259switchgrass|gb167|FE633179623760884.2globlastp
1638LAB259maize|gb170|AI491620623860883.7globlastp
1639LAB259switchgrass|gb167|FE658096623960883.6globlastp
1640LAB259brachypodium|09v1|SRR031795S0049444624060883.3globlastp
1641LAB259brachypodium|gb169|BE488380624160882.7globlastp
1642LAB259cenchrus|gb166|EB653342624260882.7globlastp
1643LAB259pseudoroegneria|gb167|FF343851624360882.6globlastp
1644LAB259sorghum|gb161.crp|BE594723624460882.6globlastp
1645LAB259wheat|gb164|BE400850624560882.49glotblastn
1646LAB259sugarcane|gb157.3|CA099266624660882.27glotblastn
1647LAB259wheat|gb164|BE497098624760882.21glotblastn
1648LAB259oat|10v1|GO582575624860882.2globlastp
1649LAB259barley|10v1|BF622384624960881.14glotblastn
1650LAB261sorghum|09v1|SB01G021890625061096.8globlastp
1651LAB261sorghum|gb161.crp|AA979985625061096.8globlastp
1652LAB261maize|gb170|AA979985625161096.6globlastp
1653LAB261sugarcane|10v1|CA089729625261096.6globlastp
1654LAB261sugarcane|gb157.3|CA089729625361096.3globlastp
1655LAB261switchgrass|gb167|FE613678625461096.3globlastp
1656LAB261switchgrass|gb167|FE612491625561096.1globlastp
1657LAB261millet|09v1|EVO454PM012321625661095.3globlastp
1658LAB261brachypodium|09v1|DV475368625761094.7globlastp
1659LAB261brachypodium|gb169|BE403608625761094.7globlastp
1660LAB261oak|gb170|CU639846625861094.2globlastp
1661LAB261cenchrus|gb166|EB657433625961094globlastp
1662LAB261chestnut|gb170|SRR006295S0002108626061093.9globlastp
1663LAB261castorbean|09v1|EG657682626161093.7globlastp
1664LAB261castorbean|gb160|EG657682626161093.7globlastp
1665LAB261citrus|gb166|CB292297626261093.7globlastp
1666LAB261barley|10v1|BI951489626361093.4globlastp
1667LAB261barley|gb157SOLEXA|BI951489626361093.4globlastp
1668LAB261cacao|gb167|CF974396626461093.4globlastp
1669LAB261eschscholzia|10v1|CD476664626561093.1globlastp
1670LAB261petunia|gb171|DY395574626661093.1globlastp
1671LAB261cleome_gynandra|10v1|SRR015532S0007556626761092.9globlastp
1672LAB261cotton|gb164|BF276437626861092.9globlastp
1673LAB261grape|gb160|BM436812626961092.9globlastp
1674LAB261papaya|gb165|EX245895627061092.9globlastp
1675LAB261wheat|gb164|AL828650627161092.9globlastp
1676LAB261wheat|gb164|BE403608627161092.9globlastp
1677LAB261wheat|gb164|BE471112627161092.9globlastp
1678LAB261grape|gb160|BQ798967627261092.6globlastp
1679LAB261cassava|09v1|CK644886627361092.3globlastp
1680LAB261cycas|gb166|CB088840627461092.3globlastp
1681LAB261kiwi|gb166|FG404410627561092.3globlastp
1682LAB261cucumber|09v1|DV633870627661092.1globlastp
1683LAB261cassava|09v1|CK645201627761092.1globlastp
1684LAB261cassava|gb164|CK645201627761092.1globlastp
1685LAB261bean|gb167|CA900293627861091.8globlastp
1686LAB261peanut|gb171|CD037806627961091.8globlastp
1687LAB261poplar|10v1|BI138784628061091.8globlastp
1688LAB261prunus|gb167|BU039320628161091.8globlastp
1689LAB261tobacco|gb162|CV016319628261091.8globlastp
1690LAB261cotton|gb164|BM359655628361091.5globlastp
1691LAB261cowpea|gb166|FF382735628461091.5globlastp
1692LAB261pepper|gb171|BM063583628561091.5globlastp
1693LAB261pine|10v1|AA739737628661091.5globlastp
1694LAB261pine|gb157.2|AA739737628661091.5globlastp
1695LAB261poplar|gb170|BI138784628761091.5globlastp
1696LAB261strawberry|gb164|CO816775628861091.5globlastp
1697LAB261tobacco|gb162|DW002414628961091.5globlastp
1698LAB261tobacco|gb162|EB444412629061091.5globlastp
1699LAB261ipomoea|gb157.2|BJ553883629161091.3globlastp
1700LAB261soybean|gb168|AW720478629261091.3globlastp
1701LAB261tomato|09v1|BG124641629361091.3globlastp
1702LAB261tomato|gb164|BG124641629361091.3globlastp
1703LAB261triphysaria|gb164|EY179701629461091.3globlastp
1704LAB261millet|09v1|EVO454PM004697629561091globlastp
1705LAB261nasturtium|10v1|SRR032558S0011340629661091globlastp
1706LAB261solanum_phureja|09v1|SPHBG124641629761091globlastp
1707LAB261pine|10v1|AA739586629861091globlastp
1708LAB261pine|gb157.2|AA739586629861091globlastp
1709LAB261poplar|10v1|BI121493629961091globlastp
1710LAB261poplar|gb170|BI121493629961091globlastp
1711LAB261potato|10v1|BF153891629761091globlastp
1712LAB261potato|gb157.2|BF153891629761091globlastp
1713LAB261rice|gb170|OS11G37890630061091globlastp
1714LAB261spruce|gb162|CO227086630161091globlastp
1715LAB261switchgrass|gb167|DN140657629561091globlastp
1716LAB261triphysaria|10v1|EY179701630261091globlastp
1717LAB261aquilegia|10v1|DR926102630361090.8globlastp
1718LAB261aquilegia|gb157.3|DR926102630361090.8globlastp
1719LAB261sugarcane|10v1|CA070225630461090.8globlastp
1720LAB261sugarcane|gb157.3|CA070225630461090.8globlastp
1721LAB261eggplant|10v1|FS012567630561090.7globlastp
1722LAB261monkeyflower|10v1|DV207215630661090.7globlastp
1723LAB261monkeyflower|10v1|GO993454630761090.7globlastp
1724LAB261bean|gb167|CA900782630861090.7globlastp
1725LAB261petunia|gb171|FN001638630961090.7globlastp
1726LAB261soybean|gb168|BE943442631061090.7globlastp
1727LAB261spruce|gb162|CO230551631161090.7globlastp
1728LAB261nasturtium|10v1|SRR032558S0012367631261090.5globlastp
1729LAB261salvia|10v1|SRR014553S0011018631361090.5globlastp
1730LAB261sorghum|09v1|SB05G022890631461090.5globlastp
1731LAB261apple|gb171|CN489582631561090.5globlastp
1732LAB261cowpea|gb166|FF548366631661090.5globlastp
1733LAB261lotus|09v1|LLAF000387631761090.5globlastp
1734LAB261lotus|gb157.2|AF000387631761090.5globlastp
1735LAB261medicago|09v1|AW684320631861090.5globlastp
1736LAB261medicago|gb157.2|AW684320631861090.5globlastp
1737LAB261pepper|gb171|CA847567631961090.5globlastp
1738LAB261soybean|gb168|AW720589632061090.5glotblastn
1739LAB261sorghum|gb161.crp|AI621789631461090.5globlastp
1740LAB261medicago|09v1|LLAW287978632161090.3globlastp
1741LAB261medicago|gb157.2|AW287978632161090.3globlastp
1742LAB261apple|gb171|CN491348632261090.2globlastp
1743LAB261arabidopsis|gb165|AT5G28840632361090.2globlastp
1744LAB261artemisia|10v1|EY051556632461090.2globlastp
1745LAB261potato|10v1|BG096609632561090.2globlastp
1746LAB261potato|gb157.2|BG096609632561090.2globlastp
1747LAB261sunflower|gb162|CD851148632661090.2globlastp
1748LAB261tomato|09v1|BG124848632761090.2globlastp
1749LAB261tomato|gb164|BG124848632761090.2globlastp
1750LAB261lettuce|10v1|DW145532632861089.9globlastp
1751LAB261solanum_phureja|09v1|SPHBG124848632961089.9globlastp
1752LAB261artemisia|gb164|EY051556633061089.9globlastp
1753LAB261lettuce|gb157.2|DW104433632861089.9globlastp
1754LAB261lettuce|gb157.2|DW145532632861089.9globlastp
1755LAB261sunflower|gb162|DY905774633161089.9globlastp
1756LAB261lettuce|10v1|DW057783632861089.9globlastp
1757LAB261arabidopsis_lyrata|09v1|JGIAL022633633261089.7globlastp
1758LAB261lettuce|gb157.2|DW044085633361089.7globlastp
1759LAB261radish|gb164|EV537961633461089.7globlastp
1760LAB261b_rapa|gb162|CO750452633561089.4globlastp
1761LAB261canola|gb161|BQ704449633561089.4globlastp
1762LAB261canola|10v1|BQ704449633561089.4globlastp
1763LAB261canola|gb161|CD830432633561089.4globlastp
1764LAB261centaurea|gb166|EH738056633661089.2globlastp
1765LAB261cichorium|gb171|EH675975633761089.2globlastp
1766LAB261safflower|gb162|EL377966633861089.2globlastp
1767LAB261tragopogon|10v1|SRR020205S0000342633961089.15glotblastn
1768LAB261brachypodium|09v1|DV472085634061088.9globlastp
1769LAB261brachypodium|gb169|BE412805634061088.9globlastp
1770LAB261barley|10v1|BE412761634161088.7globlastp
1771LAB261barley|gb157SOLEXA|BE412805634161088.7globlastp
1772LAB261maize|gb170|AI621789634261088.7globlastp
1773LAB261radish|gb164|EY935796634361088.7globlastp
1774LAB261b_oleracea|gb161|AM395321634461088.65glotblastn
1775LAB261soybean|gb168|AW719861634561088.17glotblastn
1776LAB261wheat|gb164|BE470986634661088.13glotblastn
1777LAB261wheat|gb164|BE415328634761087.57glotblastn
1778LAB261lolium|10v1|AU246974634861087.3globlastp
1779LAB261oat|10v1|CN815416634961087.3globlastp
1780LAB261cassava|09v1|JGICASSAVA38534M1635061087globlastp
1781LAB261spikemoss|gb165|DN838866635161086.3globlastp
1782LAB261spikemoss|gb165|FE443875635261086.3globlastp
1783LAB261banana|gb167|DN240198635361085.8globlastp
1784LAB261physcomitrella|10v1|AW145217635461085.3globlastp
1785LAB261physcomitrella|gb157|AW145217635461085.3globlastp
1786LAB261physcomitrella|10v1|BJ176425635561084.2globlastp
1787LAB261gerbera|09v1|AJ753310635661084.13glotblastn
1788LAB261coffea|10v1|DV685976635761084.1globlastp
1789LAB261physcomitrella|10v1|BJ172060635861084globlastp
1790LAB261fescue|gb161|DT680485635961083.7globlastp
1791LAB261marchantia|gb166|BJ840495636061083.4globlastp
1792LAB261spikemoss|gb165|FE449379636161082.6globlastp
1793LAB261avocado|10v1|CK754925636261081globlastp
1794LAB261avocado|gb164|CK754925636261081globlastp
1795LAB263millet|09v1|EVO454PM004666636361295.1globlastp
1796LAB263switchgrass|gb167|DN144095636461294.4globlastp
1797LAB263switchgrass|gb167|FL896428636461294.4globlastp
1798LAB263sugarcane|10v1|CA073725636561293.7globlastp
1799LAB263cenchrus|gb166|EB657377636661293.7globlastp
1800LAB263sorghum|09v1|SB01G017460636561293.7globlastp
1801LAB263sorghum|gb161.crp|BE345577636561293.7globlastp
1802LAB263sugarcane|gb157.3|CA069290636561293.7globlastp
1803LAB263wheat|gb164|AL821110636761290.9globlastp
1804LAB263wheat|gb164|BG262576636861290.9globlastp
1805LAB263barley|10v1|BF254790636961290.2globlastp
1806LAB263barley|gb157SOLEXA|AL505544636961290.2globlastp
1807LAB263brachypodium|09v1|DV478084637061289.6globlastp
1808LAB263brachypodium|gb169|BF293509637061289.6globlastp
1809LAB263lovegrass|gb167|EH189807637161289.51glotblastn
1810LAB263oat|10v1|GO591788637261289.5globlastp
1811LAB263fescue|gb161|DT680080637361289.5globlastp
1812LAB263wheat|gb164|BF293509637461288.9globlastp
1813LAB263banana|gb167|FF561386637561283.2globlastp
1814LAB264barley|10v1|BF621209637661386.7globlastp
1815LAB264wheat|gb164|BF293634637761386.42glotblastn
1816LAB264barley|gb157SOLEXA|AL506359637861386.3globlastp
1817LAB264leymus|gb166|EG377220637961386.2globlastp
1818LAB264maize|gb170|AI664956638061386.1globlastp
1819LAB264switchgrass|gb167|DN142147638161386.1globlastp
1820LAB264sorghum|09v1|SB01G017060638261384.4globlastp
1821LAB264sorghum|gb161.crp|BE355313638261384.4globlastp
1822LAB264brachypodium|09v1|DV472183638361383.8globlastp
1823LAB264brachypodium|gb169|BE490826638461383.5globlastp
1824LAB264maize|gb170|CRPZM2N054279638561383.3globlastp
1825LAB264sugarcane|gb157.3|CA065380638661381.16glotblastn
1826LAB265switchgrass|gb167|FL765838638761480.2globlastp
1827LAB267maize|gb170|AF083327638861597.5globlastp
1828LAB267rice|gb170|OS05G44340638961596.5globlastp
1829LAB267brachypodium|gb169|AF083344639061595.1globlastp
1830LAB267brachypodium|09v1|SRR031797S0356808639161595globlastp
1831LAB267barley|10v1|BG367325639261594.1globlastp
1832LAB267wheat|gb164|AF083344639361593.8globlastp
1833LAB267wheat|gb164|BE515416639461591.6globlastp
1834LAB267brachypodium|09v1|GT777326639561591.1globlastp
1835LAB267sorghum|09v1|SB03G034390639661588.2globlastp
1836LAB267sorghum|gb161.crp|CD204325639661588.2globlastp
1837LAB267cucumber|09v1|CV003331639761586.3globlastp
1838LAB267grape|gb160|BM437943639861585.7globlastp
1839LAB267chestnut|gb170|SRR006296S0007369639961585.2globlastp
1840LAB267brachypodium|gb169|AV934943640061584.7globlastp
1841LAB267soybean|gb168|SOYSB100HS640161584.6globlastp
1842LAB267lotus|09v1|BW598183640261584.5globlastp
1843LAB267arabidopsis|gb165|AT1G74310640361584.2globlastp
1844LAB267poplar|10v1|AI162541640461584.1globlastp
1845LAB267arabidopsis_lyrata|09v1|JGIAL007701640561584globlastp
1846LAB267poplar|gb170|AI162541640661584globlastp
1847LAB267cassava|09v1|DV445651640761583.7globlastp
1848LAB267castorbean|09v1|EG656629640861583.6globlastp
1849LAB267castorbean|gb160|EG656629640861583.6globlastp
1850LAB267pine|10v1|AA566965640961582.8globlastp
1851LAB267tobacco|gb162|AF083343641061582.5globlastp
1852LAB267monkeyflower|10v1|SRR037227S0004657641161582.3globlastp
1853LAB267tomato|09v1|BG126435641261582.2globlastp
1854LAB267solanum_phureja|09v1|SPHBG126435641361581.9globlastp
1855LAB268arabidopsis_lyrata|09v1|CRPALE000200616616100globlastp
1856LAB268arabidopsis_lyrata|09v1|JGIAL000723616616100globlastp
1857LAB268arabidopsis_lyrata|09v1|JGIAL000743616616100globlastp
1858LAB268arabidopsis_lyrata|09v1|JGIAL017658616616100globlastp
1859LAB268arabidopsis_lyrata|09v1|JGIAL017717616616100globlastp
1860LAB268arabidopsis_lyrata|09v1|JGIAL018619616616100globlastp
1861LAB268arabidopsis_lyrata|09v1|JGIAL030589616616100globlastp
1862LAB268arabidopsis_lyrata|09v1|JGIAL030619616616100globlastp
1863LAB268arabidopsis_lyrata|09v1|JGIAL032285616616100globlastp
1864LAB268artemisia|10v1|EF549583616616100globlastp
1865LAB268artemisia|10v1|EY034318616616100globlastp
1866LAB268artemisia|10v1|EY039119616616100globlastp
1867LAB268artemisia|10v1|EY042941616616100globlastp
1868LAB268artemisia|10v1|EY043355616616100globlastp
1869LAB268artemisia|10v1|EY053904616616100globlastp
1870LAB268artemisia|10v1|EY053905616616100globlastp
1871LAB268artemisia|10v1|EY054470616616100globlastp
1872LAB268artemisia|10v1|EY055002616616100globlastp
1873LAB268artemisia|10v1|EY058090616616100globlastp
1874LAB268artemisia|10v1|EY059748616616100globlastp
1875LAB268artemisia|10v1|EY094034616616100globlastp
1876LAB268artemisia|10v1|EY112179616616100globlastp
1877LAB268artemisia|10v1|GW328652616616100globlastp
1878LAB268artemisia|10v1|GW328923616616100globlastp
1879LAB268artemisia|10v1|GW328962616616100globlastp
1880LAB268artemisia|10v1|GW329063616616100globlastp
1881LAB268artemisia|10v1|GW329182616616100globlastp
1882LAB268artemisia|10v1|GW329192616616100globlastp
1883LAB268artemisia|10v1|GW329412616616100globlastp
1884LAB268artemisia|10v1|GW330388616616100globlastp
1885LAB268artemisia|10v1|GW331835616616100globlastp
1886LAB268artemisia|10v1|SRR019254S0000375616616100globlastp
1887LAB268artemisia|10v1|SRR019254S0000380616616100globlastp
1888LAB268artemisia|10v1|SRR019254S0000431616616100globlastp
1889LAB268artemisia|10v1|SRR019254S0000460616616100globlastp
1890LAB268artemisia|10v1|SRR019254S0000626616616100globlastp
1891LAB268artemisia|10v1|SRR019254S0001178616616100globlastp
1892LAB268artemisia|10v1|SRR019254S0001487616616100globlastp
1893LAB268artemisia|10v1|SRR019254S0001518616616100globlastp
1894LAB268artemisia|10v1|SRR019254S0003786616616100globlastp
1895LAB268artemisia|10v1|SRR019254S0004038616616100globlastp
1896LAB268artemisia|10v1|SRR019254S0004262616616100globlastp
1897LAB268artemisia|10v1|SRR019254S0005211616616100globlastp
1898LAB268artemisia|10v1|SRR019254S0005860616616100globlastp
1899LAB268artemisia|10v1|SRR019254S0005963616616100globlastp
1900LAB268artemisia|10v1|SRR019254S0006055616616100globlastp
1901LAB268artemisia|10v1|SRR019254S0008243616616100globlastp
1902LAB268artemisia|10v1|SRR019254S0008256616616100globlastp
1903LAB268artemisia|10v1|SRR019254S0009721616616100globlastp
1904LAB268artemisia|10v1|SRR019254S0011742616616100globlastp
1905LAB268artemisia|10v1|SRR019254S0012498616616100globlastp
1906LAB268artemisia|10v1|SRR019254S0013446616616100globlastp
1907LAB268artemisia|10v1|SRR019254S0013783616616100globlastp
1908LAB268artemisia|10v1|SRR019254S0015995616616100globlastp
1909LAB268artemisia|10v1|SRR019254S0017378616616100globlastp
1910LAB268artemisia|10v1|SRR019254S0019913616616100globlastp
1911LAB268artemisia|10v1|SRR019254S0020607616616100globlastp
1912LAB268artemisia|10v1|SRR019254S0022185616616100globlastp
1913LAB268artemisia|10v1|SRR019254S0022238616616100globlastp
1914LAB268artemisia|10v1|SRR019254S0024032616616100globlastp
1915LAB268artemisia|10v1|SRR019254S0024180616616100globlastp
1916LAB268artemisia|10v1|SRR019254S0025912616616100globlastp
1917LAB268artemisia|10v1|SRR019254S0026259616616100globlastp
1918LAB268artemisia|10v1|SRR019254S0029317616616100globlastp
1919LAB268artemisia|10v1|SRR019254S0029360616616100globlastp
1920LAB268artemisia|10v1|SRR019254S0030218616616100globlastp
1921LAB268artemisia|10v1|SRR019254S0030358616616100globlastp
1922LAB268artemisia|10v1|SRR019254S0032259616616100globlastp
1923LAB268artemisia|10v1|SRR019254S0051179616616100globlastp
1924LAB268artemisia|10v1|SRR019254S0052017616616100globlastp
1925LAB268artemisia|10v1|SRR019254S0061794616616100globlastp
1926LAB268artemisia|10v1|SRR019254S0069114616616100globlastp
1927LAB268artemisia|10v1|SRR019254S0074817616616100globlastp
1928LAB268artemisia|10v1|SRR019254S0076339616616100globlastp
1929LAB268artemisia|10v1|SRR019254S0079662616616100globlastp
1930LAB268artemisia|10v1|SRR019254S0105221616616100globlastp
1931LAB268artemisia|10v1|SRR019254S0114141616616100globlastp
1932LAB268artemisia|10v1|SRR019254S0120013616616100globlastp
1933LAB268artemisia|10v1|SRR019254S0127473616616100globlastp
1934LAB268artemisia|10v1|SRR019254S0130786616616100globlastp
1935LAB268artemisia|10v1|SRR019254S0140955616616100globlastp
1936LAB268artemisia|10v1|SRR019254S0143768616616100globlastp
1937LAB268artemisia|10v1|SRR019254S0147045616616100globlastp
1938LAB268artemisia|10v1|SRR019254S0266839616616100globlastp
1939LAB268artemisia|10v1|SRR019254S0270614616616100globlastp
1940LAB268artemisia|10v1|SRR019254S0279002616616100globlastp
1941LAB268artemisia|10v1|SRR019254S0387282616616100globlastp
1942LAB268artemisia|10v1|SRR019254S0579805616616100globlastp
1943LAB268artemisia|10v1|SRR019546S0035668616616100globlastp
1944LAB268artemisia|10v1|SRR019546S0183437616616100globlastp
1945LAB268artemisia|10v1|SRR019550S0048076616616100globlastp
1946LAB268artemisia|10v1|SRR019550S0262313616616100globlastp
1947LAB268artemisia|10v1|SRR019550S0292384616616100globlastp
1948LAB268barley|10v1|BE412942616616100globlastp
1949LAB268barley|10v1|BF622067616616100globlastp
1950LAB268barley|10v1|BF626567616616100globlastp
1951LAB268barley|10v1|BI949272616616100globlastp
1952LAB268brachypodium|09v1|GT779131616616100globlastp
1953LAB268canola|10v1|CD812149616616100globlastp
1954LAB268canola|10v1|CD822786616616100globlastp
1955LAB268canola|10v1|CN736543616616100globlastp
1956LAB268canola|10v1|CX187745616616100globlastp
1957LAB268cassava|09v1|BI325167616616100globlastp
1958LAB268cassava|09v1|JGICASSAVA41199M1616616100globlastp
1959LAB268cassava|09v1|JGICASSAVA46265M1616616100globlastp
1960LAB268chickpea|09v2|GR392086616616100globlastp
1961LAB268chickpea|09v2|GR398679616616100globlastp
1962LAB268cleome_gynandra|10v1|SRR015532S0007899616616100globlastp
1963LAB268cleome_gynandra|10v1|SRR015532S0022381616616100globlastp
1964LAB268cleome_gynandra|10v1|SRR015532S0062423616616100globlastp
1965LAB268cleome_gynandra|10v1|SRR015532S0098412616616100globlastp
1966LAB268cleome_gynandra|10v1|SRR015532S0197501616616100globlastp
1967LAB268cleome_spinosa|10v1|GR931018616616100globlastp
1968LAB268cleome_spinosa|10v1|GR932515616616100globlastp
1969LAB268cleome_spinosa|10v1|SRR015531S0001363616616100globlastp
1970LAB268cucumber|09v1|AM732498616616100globlastp
1971LAB268cucumber|09v1|BGI454H0122642616616100globlastp
1972LAB268cucumber|09v1|BI740176616616100globlastp
1973LAB268cucumber|09v1|CK085478616616100globlastp
1974LAB268cucumber|09v1|CK085975616616100globlastp
1975LAB268cucumber|09v1|CK755431616616100globlastp
1976LAB268cucumber|09v1|DV633267616616100globlastp
1977LAB268eggplant|10v1|AB018245616616100globlastp
1978LAB268eggplant|10v1|FS000621616616100globlastp
1979LAB268eggplant|10v1|FS001270616616100globlastp
1980LAB268eggplant|10v1|FS001671616616100globlastp
1981LAB268eggplant|10v1|FS002906616616100globlastp
1982LAB268eggplant|10v1|FS003423616616100globlastp
1983LAB268eggplant|10v1|FS013921616616100globlastp
1984LAB268eschscholzia|10v1|CD481738616616100globlastp
1985LAB268eschscholzia|10v1|SRR014116S00186486414616100glotblastn
1986LAB268flax|09v1|EH791223616616100globlastp
1987LAB268gerbera|09v1|AJ750671616616100globlastp
1988LAB268gerbera|09v1|AJ751622616616100globlastp
1989LAB268gerbera|09v1|AJ752458616616100globlastp
1990LAB268gerbera|09v1|AJ752576616616100globlastp
1991LAB268gerbera|09v1|AJ752839616616100globlastp
1992LAB268gerbera|09v1|AJ752885616616100globlastp
1993LAB268gerbera|09v1|AJ752992616616100globlastp
1994LAB268ginseng|10v1|GR871062616616100globlastp
1995LAB268heritiera|10v1|SRR005795S0006089616616100globlastp
1996LAB268ipomoea_batatas|10v1|CB330659616616100globlastp
1997LAB268ipomoea_batatas|10v1|CB330711616616100globlastp
1997LAB268ipomoea|gb157.2|CB330711616616100globlastp
1998LAB268ipomoea_batatas|10v1|CB330950616616100globlastp
1999LAB268ipomoea_batatas|10v1|DV034788616616100globlastp
2000LAB268ipomoea_nil|10v1|BJ553415616616100globlastp
2001LAB268ipomoea_nil|10v1|BJ553690616616100globlastp
2002LAB268ipomoea_nil|10v1|BJ555300616616100globlastp
2003LAB268ipomoea_nil|10v1|BJ556362616616100globlastp
2004LAB268ipomoea_nil|10v1|BJ556445616616100globlastp
2005LAB268ipomoea_nil|10v1|BJ558611616616100globlastp
2006LAB268ipomoea_nil|10v1|BJ560747616616100globlastp
2007LAB268ipomoea_nil|10v1|CJ738107616616100globlastp
2008LAB268jatropha|09v1|FM887562616616100globlastp
2009LAB268jatropha|09v1|GT228453616616100globlastp
2010LAB268lettuce|10v1|DW047742616616100globlastp
2011LAB268lettuce|10v1|DW073761616616100globlastp
2012LAB268lettuce|10v1|DW075639616616100globlastp
2013LAB268lettuce|10v1|DW104254616616100globlastp
2014LAB268lettuce|10v1|DW121060616616100globlastp
2015LAB268lettuce|10v1|DW163248616616100globlastp
2016LAB268lolium|10v1|AU247171616616100globlastp
2017LAB268lolium|10v1|X79715616616100globlastp
2018LAB268lotus|09v1|BE122552616616100globlastp
2019LAB268lotus|09v1|CB828743616616100globlastp
2020LAB268lotus|09v1|CRPLJ031736616616100globlastp
2021LAB268lotus|09v1|CRPLJ032446616616100globlastp
2022LAB268medicago|09v1|AL366317616616100globlastp
2023LAB268medicago|09v1|LLCO514535616616100globlastp
2024LAB268monkeyflower|10v1|DV206763616616100globlastp
2025LAB268monkeyflower|10v1|DV207134616616100globlastp
2026LAB268monkeyflower|10v1|DV207153616616100globlastp
2027LAB268monkeyflower|10v1|DV207802616616100globlastp
2028LAB268monkeyflower|10v1|DV2099396415616100glotblastn
2029LAB268monkeyflower|10v1|GO967795616616100globlastp
2030LAB268monkeyflower|10v1|GR008873616616100globlastp
2031LAB268nasturtium|10v1|GH167522616616100globlastp
2032LAB268nasturtium|10v1|SRR032558S0008057616616100globlastp
2033LAB268nasturtium|10v1|SRR032558S0034910616616100globlastp
2034LAB268nasturtium|10v1|SRR032558S0046943616616100globlastp
2035LAB268nasturtium|10v1|SRR032558S0089537616616100globlastp
2036LAB268nasturtium|10v1|SRR032558S0209453616616100globlastp
2037LAB268nasturtium|10v1|SRR032558S0317266616616100globlastp
2038LAB268nasturtium|10v1|SRR032562S0059705616616100globlastp
2039LAB268orobanche|10v1|SRR023189S0000081616616100globlastp
2040LAB268orobanche|10v1|SRR023189S0000767616616100globlastp
2041LAB268orobanche|10v1|SRR023189S0001936616616100globlastp
2042LAB268orobanche|10v1|SRR023189S0004131616616100globlastp
2043LAB268orobanche|10v1|SRR023189S0004660616616100globlastp
2044LAB268orobanche|10v1|SRR023189S0006888616616100globlastp
2045LAB268orobanche|10v1|SRR023189S0009928616616100globlastp
2046LAB268orobanche|10v1|SRR023189S0011568616616100globlastp
2047LAB268orobanche|10v1|SRR023189S0013200616616100globlastp
2048LAB268orobanche|10v1|SRR023189S0014259616616100globlastp
2049LAB268orobanche|10v1|SRR023189S0014732616616100globlastp
2050LAB268orobanche|10v1|SRR023189S0015759616616100globlastp
2051LAB268orobanche|10v1|SRR023189S0016379616616100globlastp
2052LAB268orobanche|10v1|SRR023189S0022127616616100globlastp
2053LAB268orobanche|10v1|SRR023189S0032223616616100globlastp
2054LAB268orobanche|10v1|SRR023189S0032511616616100globlastp
2055LAB268orobanche|10v1|SRR023189S0046559616616100globlastp
2056LAB268orobanche|10v1|SRR023189S0052369616616100globlastp
2057LAB268orobanche|10v1|SRR023189S0105273616616100globlastp
2058LAB268pea|09v1|EX568819616616100globlastp
2059LAB268pea|09v1|EX568820616616100globlastp
2060LAB268pea|09v1|EX568868616616100globlastp
2061LAB268pea|09v1|EX569051616616100globlastp
2062LAB268pea|09v1|EX570280616616100globlastp
2063LAB268pea|09v1|EX570347616616100globlastp
2064LAB268pea|09v1|EX571335616616100globlastp
2065LAB268pea|09v1|EX571343616616100globlastp
2066LAB268pea|09v1|FG533048616616100globlastp
2067LAB268pea|09v1|PSU10042616616100globlastp
2068LAB268physcomitrella|10v1|DC934350616616100globlastp
2069LAB268physcomitrella|10v1|FC374737616616100globlastp
2070LAB268physcomitrella|10v1|FC381484616616100globlastp
2071LAB268physcomitrella|10v1|FC411388616616100globlastp
2072LAB268physcomitrella|10v1|XM001751677616616100globlastp
2073LAB268physcomitrella|10v1|XM001766297616616100globlastp
2074LAB268physcomitrella|10v1|XM001768151616616100globlastp
2075LAB268physcomitrella|10v1|XM001769639616616100globlastp
2076LAB268physcomitrella|10v1|XM001779929616616100globlastp
2077LAB268physcomitrella|10v1|XM001783766616616100globlastp
2078LAB268pigeonpea|gb171|GR471003616616100globlastp
2079LAB268pine|10v1|AL750508616616100globlastp
2080LAB268pine|10v1|AW697623616616100globlastp
2081LAB268poplar|10v1|BI119654616616100globlastp
2082LAB268poplar|10v1|BI119694616616100globlastp
2083LAB268poplar|10v1|CA823688616616100globlastp
2084LAB268rhizophora|10v1|SRR005793S0007192616616100globlastp
2085LAB268rose|10v1|EC586164616616100globlastp
2086LAB268salvia|10v1|SRR014553S0011349616616100globlastp
2087LAB268solanum_phureja|09v1|SPHBG124775616616100globlastp
2088LAB268sugarcane|10v1|CA073794616616100globlastp
2089LAB268sugarcane|10v1|CA078899616616100globlastp
2090LAB268tragopogon|10v1|SRR020205S0059721616616100globlastp
2091LAB268tragopogon|10v1|SRR020205S0133874616616100globlastp
2092LAB268triphysaria|10v1|CB815020616616100globlastp
2093LAB268triphysaria|10v1|DR171915616616100globlastp
2094LAB268triphysaria|10v1|EX999454616616100globlastp
2095LAB268triphysaria|10v1|EY151225616616100globlastp
2096LAB268triphysaria|10v1|SRR023500S0026363616616100globlastp
2097LAB268triphysaria|10v1|SRR023500S0047657616616100globlastp
2098LAB268amborella|gb166|CK7667836416616100glotblastn
2099LAB268amborella|gb166|FD441330616616100globlastp
2100LAB268antirrhinum|gb166|AJ558339616616100globlastp
2101LAB268antirrhinum|gb166|AJ558802616616100globlastp
2102LAB268antirrhinum|gb166|AJ559512616616100globlastp
2103LAB268antirrhinum|gb166|AJ787885616616100globlastp
2104LAB268antirrhinum|gb166|AJ790005616616100globlastp
2105LAB268antirrhinum|gb166|AJ791274616616100globlastp
2106LAB268antirrhinum|gb166|AJ799867616616100globlastp
2107LAB268apple|gb171|CO418311616616100globlastp
2108LAB268arabidopsis|gb165|AT1G07660616616100globlastp
2109LAB268arabidopsis|gb165|AT1G07820616616100globlastp
2110LAB268arabidopsis|gb165|AT3G45930616616100globlastp
2111LAB268arabidopsis|gb165|AT3G46320616616100globlastp
2112LAB268arabidopsis|gb165|AT3G53730616616100globlastp
2113LAB268arabidopsis|gb165|AT5G59690616616100globlastp
2114LAB268arabidopsis|gb165|BP850938616616100globlastp
2115LAB268artemisia|10v1|SRR019254S0004605616616100globlastp
2116LAB268artemisia|gb164|EF549583616616100globlastp
2117LAB268artemisia|gb164|EY032843616616100globlastp
2118LAB268artemisia|10v1|EY064628616616100globlastp
2119LAB268artemisia|10v1|EY035013616616100globlastp
2120LAB268artemisia|10v1|EY037977616616100globlastp
2121LAB268artemisia|10v1|SRR019254S0006003616616100globlastp
2122LAB268artemisia|gb164|EY043355616616100globlastp
2123LAB268artemisia|10v1|SRR019254S0020909616616100globlastp
2124LAB268artemisia|10v1|EY050092616616100globlastp
2125LAB268artemisia|gb164|EY050092616616100globlastp
2126LAB268artemisia|10v1|SRR019254S0044441616616100globlastp
2127LAB268avocado|10v1|CV459682616616100globlastp
2128LAB268avocado|gb164|CV459682616616100globlastp
2129LAB268b_juncea|gb164|EVGN002280214329976417616100glotblastn
2130LAB268b_juncea|gb164|EVGN00270107220245616616100globlastp
2131LAB268b_juncea|gb164|EVGN00435218160732616616100globlastp
2132LAB268b_juncea|gb164|EVGN01147913980907616616100globlastp
2133LAB268b_juncea|gb164|EVGN01210625941088616616100globlastp
2134LAB268b_juncea|gb164|EVGN01304119480487616616100globlastp
2135LAB268b_juncea|gb164|EVGN01378815060926616616100globlastp
2136LAB268b_juncea|gb164|EVGN05791522303266616616100globlastp
2137LAB268b_juncea|gb164|EVGN06271024963259616616100globlastp
2138LAB268b_juncea|gb164|EVGN070208090119066418616100glotblastn
2139LAB268b_oleracea|gb161|AM057682616616100globlastp
2140LAB268b_oleracea|gb161|AM058666616616100globlastp
2141LAB268b_oleracea|gb161|DY026989616616100globlastp
2142LAB268b_oleracea|gb161|DY027228616616100globlastp
2143LAB268b_oleracea|gb161|DY029054616616100globlastp
2144LAB268b_oleracea|gb161|DY029685616616100globlastp
2145LAB268b_oleracea|gb161|EE530587616616100globlastp
2146LAB268b_oleracea|gb161|EE5344246419616100glotblastn
2147LAB268b_rapa|gb162|CV432481616616100globlastp
2148LAB268b_rapa|gb162|CV433459616616100globlastp
2149LAB268b_rapa|gb162|CV5445826420616100glotblastn
2150LAB268b_rapa|gb162|CX269758616616100globlastp
2151LAB268b_rapa|gb162|CX270371616616100globlastp
2152LAB268b_rapa|gb162|CX270560616616100globlastp
2153LAB268b_rapa|gb162|DN191676616616100globlastp
2154LAB268b_rapa|gb162|DY009323616616100globlastp
2155LAB268b_rapa|gb162|EE519316616616100globlastp
2156LAB268banana|gb167|ES433914616616100globlastp
2157LAB268banana|gb167|FL651053616616100globlastp
2158LAB268banana|gb167|FL658965616616100globlastp
2159LAB268banana|gb167|FL659545616616100globlastp
2160LAB268barley|gb157SOLEXA|AJ434102616616100globlastp
2161LAB268barley|gb157SOLEXA|AJ434845616616100globlastp
2162LAB268barley|10v1|BE421722616616100globlastp
2163LAB268barley|gb157SOLEXA|AJ474132616616100globlastp
2164LAB268barley|gb157SOLEXA|AL503078616616100globlastp
2165LAB268barley|gb157SOLEXA|AL503135616616100globlastp
2166LAB268barley|gb157SOLEXA|AL506117616616100globlastp
2167LAB268barley|gb157SOLEXA|AL507050616616100globlastp
2168LAB268barley|gb157SOLEXA|AL508394616616100globlastp
2169LAB268barley|10v1|AJ434816616616100globlastp
2170LAB268barley|gb157SOLEXA|AL508696616616100globlastp
2171LAB268barley|gb157SOLEXA|AL511720616616100globlastp
2172LAB268barley|gb157SOLEXA|AV914119616616100globlastp
2173LAB268barley|gb157SOLEXA|AV916515616616100globlastp
2174LAB268barley|gb157SOLEXA|AW983193616616100globlastp
2175LAB268barley|gb157SOLEXA|AW983479616616100globlastp
2176LAB268barley|gb157SOLEXA|BE060192616616100globlastp
2177LAB268barley|10v1|BE060318616616100globlastp
2178LAB268barley|gb157SOLEXA|BE060318616616100globlastp
2179LAB268barley|gb157SOLEXA|BE060796616616100globlastp
2180LAB268barley|gb157SOLEXA|BE060939616616100globlastp
2181LAB268barley|10v1|AW982907616616100globlastp
2182LAB268barley|gb157SOLEXA|BE194743616616100globlastp
2183LAB268barley|gb157SOLEXA|BE196153616616100globlastp
2184LAB268barley|gb157SOLEXA|BE231189616616100globlastp
2185LAB268barley|gb157SOLEXA|BE412620616616100globlastp
2186LAB268barley|gb157SOLEXA|BE412942616616100globlastp
2187LAB268barley|gb157SOLEXA|BE413182616616100globlastp
2188LAB268barley|10v1|BE413201616616100globlastp
2189LAB268barley|gb157SOLEXA|BE413201616616100globlastp
2190LAB268barley|gb157SOLEXA|BE421722616616100globlastp
2191LAB268barley|gb157SOLEXA|BE421883616616100globlastp
2192LAB268barley|gb157SOLEXA|BE601752616616100globlastp
2193LAB268barley|10v1|BF624980616616100globlastp
2194LAB268barley|gb157SOLEXA|BF254330616616100globlastp
2195LAB268barley|10v1|BF624368616616100globlastp
2196LAB268barley|gb157SOLEXA|BF624368616616100globlastp
2197LAB268barley|gb157SOLEXA|BF6246746421616100glotblastn
2198LAB268barley|10v1|BG299458616616100globlastp
2199LAB268barley|gb157SOLEXA|BG299458616616100globlastp
2200LAB268barley|gb157SOLEXA|BG299823616616100globlastp
2201LAB268barley|gb157SOLEXA|BG342998616616100globlastp
2202LAB268barley|gb157SOLEXA|BG415908616616100globlastp
2203LAB268barley|gb157SOLEXA|BI778954616616100globlastp
2204LAB268barley|gb157SOLEXA|BI950815616616100globlastp
2205LAB268barley|gb157SOLEXA|BI958139616616100globlastp
2206LAB268barley|gb157SOLEXA|BM099991616616100globlastp
2207LAB268barley|gb157SOLEXA|BM374416616616100globlastp
2208LAB268barley|gb157SOLEXA|BQ459166616616100globlastp
2209LAB268barley|gb157SOLEXA|BQ460747616616100globlastp
2210LAB268barley|gb157SOLEXA|BQ470488616616100globlastp
2211LAB268barley|gb157SOLEXA|BQ658061616616100globlastp
2212LAB268barley|gb157SOLEXA|CV054877616616100globlastp
2213LAB268basilicum|10v1|DY329949616616100globlastp
2214LAB268basilicum|gb157.3|DY329949616616100globlastp
2215LAB268bean|gb167|CA898697616616100globlastp
2216LAB268bean|gb167|CA898701616616100globlastp
2217LAB268bean|gb167|CA898715616616100globlastp
2218LAB268bean|gb167|CA898716616616100globlastp
2219LAB268bean|gb167|CA898718616616100globlastp
2220LAB268bean|gb167|CA898722616616100globlastp
2221LAB268bean|gb167|CA908438616616100globlastp
2222LAB268bean|gb167|CA908452616616100globlastp
2223LAB268bean|gb167|CA908482616616100globlastp
2224LAB268bean|gb167|CV532208616616100globlastp
2225LAB268bean|gb167|CV539314616616100globlastp
2226LAB268bean|gb167|CV539770616616100globlastp
2227LAB268bean|gb167|FD785198616616100globlastp
2228LAB268brachypodium|09v1|DV488531616616100globlastp
2229LAB268brachypodium|gb169|AL829713616616100globlastp
2230LAB268brachypodium|09v1|SRR031796S0015969616616100globlastp
2231LAB268brachypodium|gb169|BE398313616616100globlastp
2232LAB268brachypodium|09v1|GT777837616616100globlastp
2233LAB268brachypodium|gb169|BE399369616616100globlastp
2234LAB268brachypodium|09v1|DV469193616616100globlastp
2235LAB268brachypodium|gb169|BE399555616616100globlastp
2236LAB268brachypodium|09v1|DV470129616616100globlastp
2237LAB268brachypodium|gb169|BE399592616616100globlastp
2238LAB268brachypodium|09v1|DV477960616616100globlastp
2239LAB268brachypodium|gb169|BE400757616616100globlastp
2240LAB268brachypodium|09v1|GT763632616616100globlastp
2241LAB268brachypodium|gb169|BE403687616616100globlastp
2242LAB268brachypodium|09v1|DV471468616616100globlastp
2243LAB268brachypodium|gb169|BE413182616616100globlastp
2244LAB268brachypodium|09v1|GT767460616616100globlastp
2245LAB268brachypodium|gb169|BE415858616616100globlastp
2246LAB268brachypodium|09v1|BRADI4G30960616616100globlastp
2247LAB268brachypodium|gb169|BE417523616616100globlastp
2248LAB268brachypodium|09v1|SRR031795S0025245616616100globlastp
2249LAB268brachypodium|gb169|BM377866616616100globlastp
2250LAB268brachypodium|09v1|GT814284616616100globlastp
2251LAB268brachypodium|gb169|CA032073616616100globlastp
2252LAB268bruguiera|gb166|BP945440616616100globlastp
2253LAB268cacao|gb167|CA794917616616100globlastp
2254LAB268cacao|gb167|CA796173616616100globlastp
2255LAB268cacao|gb167|CU471543616616100globlastp
2256LAB268cacao|gb167|CU471645616616100globlastp
2257LAB268cacao|gb167|CU471805616616100globlastp
2258LAB268cacao|gb167|CU472042616616100globlastp
2259LAB268cacao|gb167|CU475022616616100globlastp
2260LAB268canola|10v1|CD811780616616100globlastp
2261LAB268canola|gb161|CD811780616616100globlastp
2262LAB268canola|10v1|CD844108616616100globlastp
2263LAB268canola|gb161|CD812149616616100globlastp
2264LAB268canola|10v1|CD812235616616100globlastp
2265LAB268canola|10v1|CD812364616616100globlastp
2266LAB268canola|10v1|CD817281616616100globlastp
2267LAB268canola|gb161|CD817281616616100globlastp
2268LAB268canola|gb161|CD818240616616100globlastp
2269LAB268canola|gb161|CD819612616616100globlastp
2270LAB268canola|10v1|CD820828616616100globlastp
2271LAB268canola|gb161|CD820828616616100globlastp
2272LAB268canola|10v1|CD822433616616100globlastp
2273LAB268canola|gb161|CD822433616616100globlastp
2274LAB268canola|gb161|CD8227866422616100glotblastn
2275LAB268canola|10v1|CD824033616616100globlastp
2276LAB268canola|gb161|CD824033616616100globlastp
2277LAB268canola|10v1|CD837998616616100globlastp
2278LAB268canola|gb161|CD837998616616100globlastp
2279LAB268canola|10v1|CD839108616616100globlastp
2280LAB268canola|gb161|CD839108616616100globlastp
2281LAB268canola|10v1|CD842271616616100globlastp
2282LAB268canola|gb161|CD8422716423616100glotblastn
2283LAB268canola|10v1|CN730085616616100globlastp
2284LAB268canola|gb161|CN730085616616100globlastp
2285LAB268canola|10v1|CN730459616616100globlastp
2286LAB268canola|10v1|CN730487616616100globlastp
2287LAB268canola|gb161|CN735734616616100globlastp
2288LAB268canola|gb161|CN736543616616100globlastp
2289LAB268canola|gb161|CN737593616616100globlastp
2290LAB268canola|gb161|CX187745616616100globlastp
2291LAB268canola|10v1|CX195068616616100globlastp
2292LAB268canola|gb161|CX195068616616100globlastp
2293LAB268canola|gb161|EE4741176424616100glotblastn
2294LAB268canola|10v1|EE477324616616100globlastp
2295LAB268canola|gb161|EE477324616616100globlastp
2296LAB268canola|10v1|CD819612616616100globlastp
2297LAB268canola|10v1|CN735734616616100globlastp
2298LAB268canola|gb161|EL592798616616100globlastp
2299LAB268canola|gb161|EV162827616616100globlastp
2300LAB268cassava|09v1|BM259658616616100globlastp
2301LAB268cassava|gb164|BM259658616616100globlastp
2302LAB268cassava|09v1|BM259754616616100globlastp
2303LAB268cassava|09v1|BM260241616616100globlastp
2304LAB268cassava|09v1|BM260294616616100globlastp
2305LAB268cassava|gb164|BM260294616616100globlastp
2306LAB268cassava|09v1|CK645687616616100globlastp
2307LAB268cassava|gb164|CK645687616616100globlastp
2308LAB268cassava|09v1|CK650665616616100globlastp
2309LAB268cassava|gb164|CK6506656425616100glotblastn
2310LAB268cassava|09v1|BM260125616616100globlastp
2311LAB268castorbean|09v1|EE257352616616100globlastp
2312LAB268castorbean|gb160|EE257352616616100globlastp
2313LAB268castorbean|09v1|XM002531608616616100globlastp
2314LAB268castorbean|gb160|MDL29582M000246616616100globlastp
2315LAB268castorbean|09v1|XM002531610616616100globlastp
2316LAB268castorbean|gb160|MDL29582M000248616616100globlastp
2317LAB268castorbean|09v1|XM002532762616616100globlastp
2318LAB268castorbean|gb160|MDL30039M000231616616100globlastp
2319LAB268castorbean|09v1|XM002518894616616100globlastp
2320LAB268castorbean|gb160|MDL30068M002607616616100globlastp
2321LAB268castorbean|09v1|T15087616616100globlastp
2322LAB268castorbean|gb160|T15087616616100globlastp
2323LAB268catharanthus|gb166|EG556351616616100globlastp
2324LAB268catharanthus|gb166|FD415203616616100globlastp
2325LAB268cenchrus|gb166|BM084286616616100globlastp
2326LAB268cenchrus|gb166|EB652615616616100globlastp
2327LAB268cenchrus|gb166|EB653521616616100globlastp
2328LAB268cenchrus|gb166|EB654271616616100globlastp
2329LAB268centaurea|gb166|EH741190616616100globlastp
2330LAB268centaurea|gb166|EH760516616616100globlastp
2331LAB268chestnut|gb170|SRR006295S0000023616616100globlastp
2332LAB268chestnut|gb170|SRR006295S0014296616616100globlastp
2333LAB268chestnut|gb170|SRR006295S0026768616616100globlastp
2334LAB268chestnut|gb170|SRR006295S0027790616616100globlastp
2335LAB268chestnut|gb170|SRR006295S0092156616616100globlastp
2336LAB268cichorium|gb171|EH700759616616100globlastp
2337LAB268cichorium|gb171|EH701323616616100globlastp
2338LAB268cichorium|gb171|EH702007616616100globlastp
2339LAB268cichorium|gb171|EH705029616616100globlastp
2340LAB268cichorium|gb171|EL365514616616100globlastp
2341LAB268citrus|gb166|BQ623154616616100globlastp
2342LAB268citrus|gb166|BQ623438616616100globlastp
2343LAB268citrus|gb166|CB611039616616100globlastp
2344LAB268citrus|gb166|CF417550616616100globlastp
2345LAB268clover|gb162|BB915510616616100globlastp
2346LAB268coffea|10v1|DV673331616616100globlastp
2347LAB268coffea|gb157.2|BQ448811616616100globlastp
2348LAB268coffea|10v1|DV664293616616100globlastp
2349LAB268coffea|gb157.2|DV664293616616100globlastp
2350LAB268coffea|10v1|DV675511616616100globlastp
2351LAB268coffea|gb157.2|DV675511616616100globlastp
2352LAB268coffea|10v1|EE193937616616100globlastp
2353LAB268coffea|gb157.2|EE193937616616100globlastp
2354LAB268cotton|gb164|AW187455616616100globlastp
2355LAB268cotton|gb164|BE0522516426616100glotblastn
2356LAB268cotton|gb164|BE052729616616100globlastp
2357LAB268cotton|gb164|BE054464616616100globlastp
2358LAB268cotton|gb164|BF271762616616100globlastp
2359LAB268cotton|gb164|BF272645616616100globlastp
2360LAB268cotton|gb164|BG441560616616100globlastp
2361LAB268cotton|gb164|BG444562616616100globlastp
2362LAB268cotton|gb164|DR462256616616100globlastp
2363LAB268cowpea|gb166|FC456858616616100globlastp
2364LAB268cowpea|gb166|FC457669616616100globlastp
2365LAB268cowpea|gb166|FC4597156427616100glotblastn
2366LAB268cowpea|gb166|FC461880616616100globlastp
2367LAB268cowpea|gb166|FF382232616616100globlastp
2368LAB268cowpea|gb166|FF383299616616100globlastp
2369LAB268cowpea|gb166|FF385079616616100globlastp
2370LAB268cowpea|gb166|FG810633616616100globlastp
2371LAB268cryptomeria|gb166|BP175287616616100globlastp
2372LAB268cryptomeria|gb166|BW994999616616100globlastp
2373LAB268cryptomeria|gb166|BW995093616616100globlastp
2374LAB268cycas|gb166|CB089451616616100globlastp
2375LAB268cycas|gb166|CB090291616616100globlastp
2376LAB268cycas|gb166|CB090429616616100globlastp
2377LAB268cycas|gb166|CB090486616616100globlastp
2378LAB268cycas|gb166|CB090617616616100globlastp
2379LAB268cynara|gb167|GE590379616616100globlastp
2380LAB268cynara|gb167|GE592628616616100globlastp
2381LAB268cynara|gb167|GE600719616616100globlastp
2382LAB268dandelion|gb161|DY811410616616100globlastp
2383LAB268dandelion|gb161|DY834572616616100globlastp
2384LAB268dandelion|gb161|DY834792616616100globlastp
2385LAB268dandelion|gb161|DY835769616616100globlastp
2386LAB268dandelion|gb161|DY837571616616100globlastp
2387LAB268dandelion|gb161|DY838255616616100globlastp
2388LAB268dandelion|gb161|DY839212616616100globlastp
2389LAB268eucalyptus|gb166|AJ627789616616100globlastp
2390LAB268eucalyptus|gb166|AY263810616616100globlastp
2391LAB268eucalyptus|gb166|CD668212616616100globlastp
2392LAB268fern|gb171|DK946600616616100globlastp
2393LAB268fern|gb171|DK953182616616100globlastp
2394LAB268fescue|gb161|DT687120616616100globlastp
2395LAB268ginger|gb164|DY3531776428616100glotblastn
2396LAB268ginger|gb164|DY356818616616100globlastp
2397LAB268ginger|gb164|DY358348616616100globlastp
2398LAB268grape|gb160|BQ792545616616100globlastp
2399LAB268grape|gb160|CB915320616616100globlastp
2400LAB268grape|gb160|CB918446616616100globlastp
2401LAB268grape|gb160|CB972888616616100globlastp
2402LAB268grape|gb160|CF215612616616100globlastp
2403LAB268iceplant|gb164|BE034500616616100globlastp
2404LAB268iceplant|gb164|BE035965616616100globlastp
2405LAB268ipomoea|gb157.2|BJ5534156429616100glotblastn
2406LAB268ipomoea|gb157.2|BJ553690616616100globlastp
2407LAB268ipomoea|gb157.2|BJ555300616616100globlastp
2408LAB268ipomoea|gb157.2|BJ556362616616100globlastp
2409LAB268ipomoea|gb157.2|BJ556445616616100globlastp
2410LAB268ipomoea|gb157.2|BJ558611616616100globlastp
2411LAB268ipomoea|gb157.2|BJ560747616616100globlastp
2412LAB268ipomoea|gb157.2|EE8757046430616100glotblastn
2413LAB268kiwi|gb166|FG404766616616100globlastp
2414LAB268kiwi|gb166|FG410628616616100globlastp
2415LAB268kiwi|gb166|FG411099616616100globlastp
2416LAB268kiwi|gb166|FG434602616616100globlastp
2417LAB268kiwi|gb166|FG4678266431616100glotblastn
2418LAB268kiwi|gb166|FG487075616616100globlastp
2419LAB268kiwi|gb166|FG487173616616100globlastp
2420LAB268kiwi|gb166|FG487653616616100globlastp
2421LAB268kiwi|gb166|FG490714616616100globlastp
2422LAB268lettuce|10v1|DW044689616616100globlastp
2423LAB268lettuce|gb157.2|DW044689616616100globlastp
2424LAB268lettuce|gb157.2|DW046019616616100globlastp
2425LAB268lettuce|gb157.2|DW046403616616100globlastp
2426LAB268lettuce|10v1|DW047728616616100globlastp
2427LAB268lettuce|gb157.2|DW047742616616100globlastp
2428LAB268lettuce|10v1|DW048625616616100globlastp
2428LAB268lettuce|gb157.2|DW048625703061683.7globlastp
2429LAB268lettuce|10v1|DW049814616616100globlastp
2430LAB268lettuce|gb157.2|DW052505616616100globlastp
2431LAB268lettuce|gb157.2|DW054176616616100globlastp
2432LAB268lettuce|10v1|DW054329616616100globlastp
2433LAB268lettuce|gb157.2|DW057506616616100globlastp
2434LAB268lettuce|gb157.2|DW058399616616100globlastp
2435LAB268lettuce|10v1|DW059381616616100globlastp
2436LAB268lettuce|10v1|DW060992616616100globlastp
2437LAB268lettuce|gb157.2|DW060992616616100globlastp
2438LAB268lettuce|gb157.2|DW073761616616100globlastp
2439LAB268lettuce|10v1|DW075486616616100globlastp
2440LAB268lettuce|gb157.2|DW075886616616100globlastp
2441LAB268lettuce|gb157.2|DW076059616616100globlastp
2442LAB268lettuce|10v1|DW080660616616100globlastp
2443LAB268lettuce|gb157.2|DW080660616616100globlastp
2444LAB268lettuce|10v1|DW082101616616100globlastp
2445LAB268lettuce|gb157.2|DW082101616616100globlastp
2446LAB268lettuce|10v1|DW083055616616100globlastp
2447LAB268lettuce|gb157.2|DW083055616616100globlastp
2448LAB268lettuce|gb157.2|DW104254616616100globlastp
2449LAB268lettuce|10v1|DW104257616616100globlastp
2450LAB268lettuce|gb157.2|DW105285616616100globlastp
2451LAB268lettuce|10v1|DW105457616616100globlastp
2452LAB268lettuce|10v1|DW054334616616100globlastp
2453LAB268lettuce|gb157.2|DW107742616616100globlastp
2454LAB268lettuce|gb157.2|DW111256616616100globlastp
2455LAB268lettuce|gb157.2|DW122037616616100globlastp
2456LAB268lettuce|10v1|DW122298616616100globlastp
2457LAB268lettuce|gb157.2|DW122298616616100globlastp
2458LAB268lettuce|gb157.2|DW122562616616100globlastp
2459LAB268lettuce|gb157.2|DW122564616616100globlastp
2460LAB268lettuce|10v1|DW123180616616100globlastp
2461LAB268lettuce|gb157.2|DW146313616616100globlastp
2462LAB268lettuce|10v1|DW147673616616100globlastp
2463LAB268lettuce|gb157.2|DW149190616616100globlastp
2464LAB268lettuce|10v1|DW159071616616100globlastp
2465LAB268lettuce|gb157.2|DW159071616616100globlastp
2466LAB268leymus|gb166|EG386168616616100globlastp
2467LAB268liquorice|gb171|FS238682616616100globlastp
2468LAB268liquorice|gb171|FS240232616616100globlastp
2469LAB268liquorice|gb171|FS248125616616100globlastp
2470LAB268liquorice|gb171|FS252094616616100globlastp
2471LAB268liriodendron|gb166|CK753794616616100globlastp
2472LAB268liriodendron|gb166|FD489954616616100globlastp
2473LAB268lotus|09v1|AW163944616616100globlastp
2474LAB268lotus|09v1|AW719271616616100globlastp
2475LAB268lotus|gb157.2|AW719271616616100globlastp
2476LAB268lotus|09v1|BW597052616616100globlastp
2477LAB268lotus|09v1|CB828182616616100globlastp
2478LAB268lovegrass|gb167|EH188910616616100globlastp
2479LAB268lovegrass|gb167|EH191855616616100globlastp
2480LAB268lovegrass|gb167|EH194037616616100globlastp
2481LAB268maize|gb170|AA054815616616100globlastp
2482LAB268maize|gb170|AI372169616616100globlastp
2483LAB268maize|gb170|AI391767616616100globlastp
2484LAB268maize|gb170|AI391810616616100globlastp
2485LAB268maize|gb170|AI395923616616100globlastp
2486LAB268maize|gb170|AI395924616616100globlastp
2487LAB268maize|gb170|AI586817616616100globlastp
2488LAB268maize|gb170|AI586897616616100globlastp
2489LAB268maize|gb170|AI600290616616100globlastp
2490LAB268maize|gb170|AI600370616616100globlastp
2491LAB268maize|gb170|AI665063616616100globlastp
2492LAB268maize|gb170|AI737770616616100globlastp
2493LAB268maize|gb170|AW055622616616100globlastp
2494LAB268maize|gb170|CO452276616616100globlastp
2495LAB268maize|gb170|LLAI987314616616100globlastp
2496LAB268maize|gb170|LLBE639905616616100globlastp
2497LAB268maize|gb170|LLDQ244862616616100globlastp
2498LAB268maize|gb170|LLDQ245092616616100globlastp
2499LAB268maize|gb170|LLDQ245956616616100globlastp
2500LAB268maize|gb170|LLFL026515616616100globlastp
2501LAB268maize|gb170|LLFL123174616616100globlastp
2502LAB268maize|gb170|T70634616616100globlastp
2503LAB268maize|gb170|W59839616616100globlastp
2504LAB268medicago|09v1|AA660565616616100globlastp
2505LAB268medicago|gb157.2|AA660565616616100globlastp
2506LAB268medicago|09v1|AJ389014616616100globlastp
2507LAB268medicago|gb157.2|AJ3890146432616100glotblastn
2508LAB268medicago|09v1|LLAJ498325616616100globlastp
2509LAB268medicago|09v1|LLAL366664616616100globlastp
2510LAB268medicago|09v1|AL371855616616100globlastp
2511LAB268medicago|gb157.2|AL371855616616100globlastp
2512LAB268medicago|gb157.2|AL374021616616100globlastp
2513LAB268medicago|09v1|AL378431616616100globlastp
2514LAB268medicago|09v1|AL379622616616100globlastp
2515LAB268medicago|09v1|AL374021616616100globlastp
2516LAB268medicago|gb157.2|AL3801656433616100glotblastn
2517LAB268medicago|09v1|AW208199616616100globlastp
2518LAB268medicago|gb157.2|AW208199616616100globlastp
2519LAB268melon|gb165|DV633267616616100globlastp
2520LAB268melon|gb165|EB7154336434616100glotblastn
2521LAB268nicotiana_benthamiana|gb162|CN743227616616100globlastp
2522LAB268nicotiana_benthamiana|gb162|CN743475616616100globlastp
2523LAB268nicotiana_benthamiana|gb162|ES887469616616100globlastp
2524LAB268nuphar|gb166|CD473517616616100globlastp
2525LAB268nuphar|gb166|CD474514616616100globlastp
2526LAB268nuphar|gb166|CD475677616616100globlastp
2527LAB268nuphar|gb166|CK745661616616100globlastp
2528LAB268nuphar|gb166|CK767296616616100globlastp
2529LAB268oak|gb170|CR627506616616100globlastp
2530LAB268oak|gb170|DB997093616616100globlastp
2531LAB268oak|gb170|SRR006307S0007341616616100globlastp
2532LAB268oak|gb170|SRR006307S0010902616616100globlastp
2533LAB268oil_palm|gb166|DQ400915616616100globlastp
2534LAB268oil_palm|gb166|EL681105616616100globlastp
2535LAB268oil_palm|gb166|EL681189616616100globlastp
2536LAB268oil_palm|gb166|EL682446616616100globlastp
2537LAB268oil_palm|gb166|EL683758616616100globlastp
2538LAB268oil_palm|gb166|EL6910236435616100glotblastn
2539LAB268onion|gb162|CF444612616616100globlastp
2540LAB268papaya|gb165|EX276160616616100globlastp
2541LAB268papaya|gb165|EX2784126436616100glotblastn
2542LAB268papaya|gb165|EX283624616616100globlastp
2543LAB268peanut|gb171|CD037531616616100globlastp
2544LAB268peanut|gb171|CD038462616616100globlastp
2545LAB268peanut|gb171|EE124369616616100globlastp
2546LAB268peanut|gb171|EE124731616616100globlastp
2547LAB268peanut|gb171|EE125784616616100globlastp
2548LAB268peanut|gb171|EE126870616616100globlastp
2549LAB268peanut|gb171|EG373202616616100globlastp
2550LAB268peanut|gb171|EH044313616616100globlastp
2551LAB268pepper|gb171|BM066225616616100globlastp
2552LAB268petunia|gb171|DC241756616616100globlastp
2553LAB268pine|10v1|AW043330616616100globlastp
2554LAB268pine|gb157.2|AW0433306437616100glotblastn
2555LAB268pine|10v1|AW754808616616100globlastp
2556LAB268pine|gb157.2|AW754808616616100globlastp
2557LAB268pine|10v1|BX249832616616100globlastp
2558LAB268pine|gb157.2|BX249832616616100globlastp
2559LAB268pine|10v1|BX254626616616100globlastp
2560LAB268pine|gb157.2|BX254626616616100globlastp
2561LAB268poplar|10v1|AI166092616616100globlastp
2562LAB268poplar|gb170|AI166092616616100globlastp
2563LAB268poplar|10v1|BI071500616616100globlastp
2564LAB268poplar|gb170|BI071500616616100globlastp
2565LAB268poplar|10v1|BI119617616616100globlastp
2566LAB268poplar|gb170|BI119617616616100globlastp
2567LAB268poplar|gb170|BI119694616616100globlastp
2568LAB268poplar|10v1|BI121111616616100globlastp
2569LAB268poplar|gb170|BI121111616616100globlastp
2570LAB268poplar|gb170|BU819667616616100globlastp
2571LAB268poplar|10v1|BU819908616616100globlastp
2572LAB268poplar|gb170|BU825016616616100globlastp
2573LAB268poplar|gb170|BU825437616616100globlastp
2574LAB268poplar|10v1|BU829589616616100globlastp
2575LAB268poplar|gb170|BU829589616616100globlastp
2576LAB268poplar|10v1|BU831961616616100globlastp
2577LAB268poplar|gb170|BU831961616616100globlastp
2578LAB268poppy|gb166|FE967969616616100globlastp
2579LAB268poppy|gb166|FG609652616616100globlastp
2580LAB268potato|gb157.2|BM407657616616100globlastp
2581LAB268prunus|gb167|AJ873312616616100globlastp
2582LAB268prunus|gb167|FC865249616616100globlastp
2583LAB268pseudoroegneria|gb167|FF346105616616100globlastp
2584LAB268pseudoroegneria|gb167|FF365552616616100globlastp
2585LAB268pseudoroegneria|gb167|FF365632616616100globlastp
2586LAB268radish|gb164|EV524552616616100globlastp
2587LAB268radish|gb164|EV525864616616100globlastp
2588LAB268radish|gb164|EV529106616616100globlastp
2589LAB268radish|gb164|EW714954616616100globlastp
2590LAB268radish|gb164|EW722342616616100globlastp
2591LAB268radish|gb164|EW7254396438616100glotblastn
2592LAB268radish|gb164|EX764592616616100globlastp
2593LAB268radish|gb164|EX888362616616100globlastp
2594LAB268radish|gb164|EX895689616616100globlastp
2595LAB268radish|gb164|EX902730616616100globlastp
2596LAB268radish|gb164|EY909354616616100globlastp
2597LAB268rice|gb170|OS01G61920616616100globlastp
2598LAB268rice|gb170|OS02G45940616616100globlastp
2599LAB268rice|gb170|OS03G02780616616100globlastp
2600LAB268rice|gb170|OS05G38740616616100globlastp
2601LAB268rice|gb170|OS05G39050616616100globlastp
2602LAB268rice|gb170|OS07G36500616616100globlastp
2603LAB268rice|gb170|OS09G38020616616100globlastp
2604LAB268rice|gb170|OS10G39410616616100globlastp
2605LAB268rose|gb157.2|BI977531616616100globlastp
2606LAB268rose|10v1|BI978035616616100globlastp
2607LAB268rose|gb157.2|BI978035616616100globlastp
2608LAB268rye|gb164|BE495291616616100globlastp
2609LAB268rye|gb164|BE704952616616100globlastp
2610LAB268rye|gb164|CD4532566439616100glotblastn
2611LAB268senecio|gb170|DY658928616616100globlastp
2612LAB268senecio|gb170|DY659560616616100globlastp
2613LAB268senecio|gb170|DY662328616616100globlastp
2614LAB268senecio|gb170|DY662897616616100globlastp
2615LAB268senecio|gb170|SRR006592S0002545616616100globlastp
2616LAB268sesame|gb157.2|BU668605616616100globlastp
2617LAB268soybean|gb168|AW163944616616100globlastp
2618LAB268soybean|gb168|AW348393616616100globlastp
2619LAB268soybean|gb168|AW574238616616100globlastp
2620LAB268soybean|gb168|AW719271616616100globlastp
2621LAB268soybean|gb168|BE660076616616100globlastp
2622LAB268soybean|gb168|BE660077616616100globlastp
2623LAB268soybean|gb168|BE660078616616100globlastp
2624LAB268soybean|gb168|BM140223616616100globlastp
2625LAB268soybean|gb168|BQ152712616616100globlastp
2626LAB268soybean|gb168|BU548084616616100globlastp
2627LAB268soybean|gb168|CA898697616616100globlastp
2628LAB268soybean|gb168|CA908437616616100globlastp
2629LAB268soybean|gb168|CA908482616616100globlastp
2630LAB268soybean|gb168|CD3937656440616100glotblastn
2631LAB268soybean|gb168|CD418622616616100globlastp
2632LAB268soybean|gb168|CF921561616616100globlastp
2633LAB268spruce|gb162|CO217448616616100globlastp
2634LAB268spruce|gb162|CO222157616616100globlastp
2635LAB268spruce|gb162|CO228093616616100globlastp
2636LAB268spruce|gb162|CO2295006441616100glotblastn
2637LAB268spruce|gb162|ES253514616616100globlastp
2638LAB268spurge|gb161|DV112721616616100globlastp
2639LAB268spurge|gb161|DV113563616616100globlastp
2640LAB268strawberry|gb164|DV439019616616100globlastp
2641LAB268strawberry|gb164|EX657115616616100globlastp
2642LAB268strawberry|gb164|EX665332616616100globlastp
2643LAB268sugarcane|gb157.3|BQ530407616616100globlastp
2644LAB268sugarcane|gb157.3|BQ531627616616100globlastp
2645LAB268sugarcane|gb157.3|BQ533111616616100globlastp
2646LAB268sugarcane|gb157.3|BQ535723616616100globlastp
2647LAB268sugarcane|gb157.3|CA067964616616100globlastp
2648LAB268sugarcane|gb157.3|CA070996616616100globlastp
2649LAB268sugarcane|gb157.3|CA071679616616100globlastp
2650LAB268sugarcane|gb157.3|CA071683616616100globlastp
2651LAB268sugarcane|gb157.3|CA072002616616100globlastp
2652LAB268sugarcane|gb157.3|CA072206616616100globlastp
2653LAB268sugarcane|gb157.3|CA072927616616100globlastp
2654LAB268sugarcane|gb157.3|CA073794616616100globlastp
2655LAB268sugarcane|gb157.3|CA077203616616100globlastp
2656LAB268sugarcane|gb157.3|CA078899616616100globlastp
2657LAB268sugarcane|gb157.3|CA080676616616100globlastp
2658LAB268sugarcane|gb157.3|CA081168616616100globlastp
2659LAB268sugarcane|gb157.3|CA082484616616100globlastp
2660LAB268sugarcane|gb157.3|CA087335616616100globlastp
2661LAB268sugarcane|gb157.3|CA103542616616100globlastp
2662LAB268sugarcane|gb157.3|CA112851616616100globlastp
2663LAB268sugarcane|gb157.3|CA115229616616100globlastp
2664LAB268sugarcane|gb157.3|CA116498616616100globlastp
2665LAB268sugarcane|gb157.3|CA118584616616100globlastp
2666LAB268sugarcane|gb157.3|CA136886616616100globlastp
2667LAB268sugarcane|gb157.3|CA138849616616100globlastp
2668LAB268sugarcane|10v1|CA072927616616100globlastp
2669LAB268sugarcane|gb157.3|CA200867616616100globlastp
2670LAB268sugarcane|gb157.3|CA201018616616100globlastp
2671LAB268sugarcane|gb157.3|CA201422616616100globlastp
2672LAB268sugarcane|gb157.3|CA229803616616100globlastp
2673LAB268sugarcane|10v1|BQ531627616616100globlastp
2674LAB268sugarcane|gb157.3|CA230627616616100globlastp
2675LAB268sugarcane|gb157.3|CA236648616616100globlastp
2676LAB268sugarcane|10v1|CA067964616616100globlastp
2677LAB268sunflower|gb162|CD848675616616100globlastp
2678LAB268sunflower|gb162|CD848813616616100globlastp
2679LAB268sunflower|gb162|CD848833616616100globlastp
2680LAB268sunflower|gb162|CD850963616616100globlastp
2681LAB268sunflower|gb162|CD850965616616100globlastp
2682LAB268sunflower|gb162|CD851153616616100globlastp
2683LAB268sunflower|gb162|CD852601616616100globlastp
2684LAB268sunflower|gb162|CD8549636442616100glotblastn
2685LAB268sunflower|gb162|DY9174016443616100glotblastn
2686LAB268sunflower|gb162|DY930625616616100globlastp
2687LAB268sunflower|gb162|DY946300616616100globlastp
2688LAB268sunflower|gb162|DY954323616616100globlastp
2689LAB268sunflower|gb162|EL511221616616100globlastp
2690LAB268switchgrass|gb167|DN141043616616100globlastp
2691LAB268switchgrass|gb167|DN141570616616100globlastp
2692LAB268switchgrass|gb167|DN142502616616100globlastp
2693LAB268switchgrass|gb167|DN143038616616100globlastp
2694LAB268switchgrass|gb167|DN143717616616100globlastp
2695LAB268switchgrass|gb167|DN143995616616100globlastp
2696LAB268switchgrass|gb167|DN145911616616100globlastp
2697LAB268switchgrass|gb167|DN146220616616100globlastp
2698LAB268switchgrass|gb167|DN150951616616100globlastp
2699LAB268switchgrass|gb167|FE605474616616100globlastp
2700LAB268switchgrass|gb167|FE616525616616100globlastp
2701LAB268switchgrass|gb167|FE620768616616100globlastp
2702LAB268switchgrass|gb167|FE644523616616100globlastp
2703LAB268switchgrass|gb167|FE647208616616100globlastp
2704LAB268switchgrass|gb167|FL725907616616100globlastp
2705LAB268switchgrass|gb167|FL727674616616100globlastp
2706LAB268tamarix|gb166|CD151503616616100globlastp
2707LAB268tamarix|gb166|CF198776616616100globlastp
2708LAB268tamarix|gb166|EG970851616616100globlastp
2709LAB268tamarix|gb166|EG971166616616100globlastp
2710LAB268tea|10v1|CV013740616616100globlastp
2711LAB268tea|gb171|CV013740616616100globlastp
2712LAB268tea|gb171|CV013760616616100globlastp
2713LAB268tea|10v1|CV013858616616100globlastp
2714LAB268tea|gb171|CV013858616616100globlastp
2715LAB268tea|gb171|CV014033616616100globlastp
2716LAB268tea|10v1|CV014119616616100globlastp
2717LAB268tea|gb171|CV014119616616100globlastp
2718LAB268tea|10v1|CV014596616616100globlastp
2719LAB268tea|gb171|CV014596616616100globlastp
2720LAB268tea|gb171|FE861323616616100globlastp
2721LAB268thellungiella|gb167|BY809845616616100globlastp
2722LAB268thellungiella|gb167|EC599850616616100globlastp
2723LAB268tobacco|gb162|BQ842894616616100globlastp
2724LAB268tobacco|gb162|BQ8430646444616100glotblastn
2725LAB268tobacco|gb162|BQ843158616616100globlastp
2726LAB268tobacco|gb162|BQ843164616616100globlastp
2727LAB268tobacco|gb162|CV016805616616100globlastp
2728LAB268tobacco|gb162|CV0173556445616100glotblastn
2729LAB268tobacco|gb162|CV018990616616100globlastp
2730LAB268tobacco|gb162|CV021089616616100globlastp
2731LAB268tomato|09v1|BG124775616616100globlastp
2732LAB268tomato|gb164|BG124775616616100globlastp
2733LAB268triphysaria|10v1|BM357139616616100globlastp
2734LAB268triphysaria|10v1|BM357221616616100globlastp
2735LAB268triphysaria|gb164|BM357221616616100globlastp
2736LAB268triphysaria|gb164|DR1709046446616100glotblastn
2737LAB268triphysaria|10v1|CB815232616616100globlastp
2738LAB268triphysaria|10v1|EX991298616616100globlastp
2739LAB268triphysaria|10v1|EX994401616616100globlastp
2740LAB268triphysaria|10v1|EX999992616616100globlastp
2741LAB268triphysaria|10v1|EX999279616616100globlastp
2742LAB268triphysaria|10v1|EY011518616616100globlastp
2743LAB268triphysaria|10v1|EY019376616616100globlastp
2744LAB268triphysaria|10v1|EY018118616616100globlastp
2745LAB268walnuts|gb166|CB303972616616100globlastp
2746LAB268walnuts|gb166|EL894979616616100globlastp
2747LAB268walnuts|gb166|EL899822616616100globlastp
2748LAB268wheat|gb164|AL8154856447616100glotblastn
2749LAB268wheat|gb164|AL8284236448616100glotblastn
2750LAB268wheat|gb164|BE4017706449616100glotblastn
2751LAB268wheat|gb164|BE402303616616100globlastp
2752LAB268wheat|gb164|BE403687616616100globlastp
2753LAB268wheat|gb164|BE4040816450616100glotblastn
2754LAB268wheat|gb164|BE4157776451616100glotblastn
2755LAB268wheat|gb164|BE415858616616100globlastp
2756LAB268wheat|gb164|BE4158726452616100glotblastn
2757LAB268wheat|gb164|BE4159236453616100glotblastn
2758LAB268wheat|gb164|BE4161556454616100glotblastn
2759LAB268wheat|gb164|BE4162486455616100glotblastn
2760LAB268wheat|gb164|BE419530616616100globlastp
2761LAB268wheat|gb164|BE422926616616100globlastp
2762LAB268wheat|gb164|BE4232866456616100glotblastn
2763LAB268wheat|gb164|BE4246536457616100glotblastn
2764LAB268wheat|gb164|BE4276696458616100glotblastn
2765LAB268wheat|gb164|BE4902136459616100glotblastn
2766LAB268wheat|gb164|BE5861996460616100glotblastn
2767LAB268wheat|gb164|BF1999556461616100glotblastn
2768LAB268wheat|gb164|BF473518616616100globlastp
2769LAB268wheat|gb164|BF484151616616100globlastp
2770LAB268wheat|gb164|BI4800196462616100glotblastn
2771LAB268wheat|gb164|BQ2952386463616100glotblastn
2772LAB268wheat|gb164|CA498443616616100globlastp
2773LAB268wheat|gb164|CA4992776464616100glotblastn
2774LAB268wheat|gb164|CA5931196465616100glotblastn
2775LAB268wheat|gb164|CA6031096466616100glotblastn
2776LAB268wheat|gb164|CA6497436467616100glotblastn
2777LAB268wheat|gb164|CA703450616616100globlastp
2778LAB268wheat|gb164|CA7036206468616100glotblastn
2779LAB268wheat|gb164|CA7079126469616100glotblastn
2780LAB268wheat|gb164|CA7289896470616100glotblastn
2781LAB268wheat|gb164|CA730994616616100globlastp
2782LAB268wheat|gb164|CN0090516471616100glotblastn
2783LAB268zamia|gb166|DY030802616616100globlastp
2784LAB268zamia|gb166|DY032938616616100globlastp
2785LAB268zamia|gb166|FD767578616616100globlastp
2786LAB268tea|10v1|CV013760616616100globlastp
2787LAB268triphysaria|10v1|BM357495616616100globlastp
2788LAB268barley|10v1|BE413182616616100globlastp
2789LAB268barley|10v1|BE454254616616100globlastp
2790LAB268barley|10v1|BE060192616616100globlastp
2791LAB268barley|10v1|BF627774616616100globlastp
2792LAB268canola|10v1|CD818240616616100globlastp
2793LAB268canola|10v1|CN737593616616100globlastp
2794LAB268lettuce|10v1|DW044538616616100globlastp
2795LAB268lettuce|10v1|DW045072616616100globlastp
2796LAB268lettuce|10v1|DW045694616616100globlastp
2797LAB268lettuce|10v1|AB183301616616100globlastp
2798LAB268lettuce|10v1|DW046403616616100globlastp
2799LAB268lettuce|10v1|DW052423616616100globlastp
2800LAB268lettuce|10v1|DW054176616616100globlastp
2801LAB268lettuce|10v1|DW057506616616100globlastp
2802LAB268lettuce|10v1|DW058399616616100globlastp
2803LAB268lettuce|10v1|DW148044616616100globlastp
2804LAB268lettuce|10v1|DW075886616616100globlastp
2805LAB268poplar|10v1|BU825437616616100globlastp
2806LAB268poplar|10v1|BU819667616616100globlastp
2807LAB268rose|10v1|BI977531616616100globlastp
2808LAB268rose|10v1|EC587236616616100globlastp
2809LAB268sugarcane|10v1|BQ533111616616100globlastp
2810LAB268sugarcane|10v1|BQ530407616616100globlastp
2811LAB268sugarcane|10v1|CA071683616616100globlastp
2812LAB268sugarcane|10v1|CA070996616616100globlastp
2813LAB268sugarcane|10v1|CA072002616616100globlastp
2814LAB268canola|10v1|CD817261616100globlastp
2815LAB268cichorium|gb171|EH698983616100globlastp
2816LAB268maize|gb170|AI391820616100glotblastn
2817LAB268peanut|gb171|EE124716616100globlastp
2818LAB268poplar|gb170|BU819908616100globlastp
2819LAB268artemisia|10v1|SRR019254S0012318647261699.03glotblastn
2820LAB268artemisia|10v1|SRR019254S0027665647361699.03glotblastn
2821LAB268artemisia|10v1|SRR019254S0111269647461699.03glotblastn
2822LAB268lettuce|10v1|DW083199647561699.03glotblastn
2823LAB268nasturtium|10v1|SRR032558S0010849647661699.03glotblastn
2824LAB268antirrhinum|gb166|AJ792433647761699.03glotblastn
2825LAB268apple|gb171|CN490774647861699.03glotblastn
2826LAB268b_rapa|gb162|CX270308647961699.03glotblastn
2827LAB268barley|gb157SOLEXA|BF259003648061699.03glotblastn
2828LAB268lettuce|gb157.2|DW084329648161699.03glotblastn
2829LAB268nicotiana_benthamiana|gb162|CK990179648261699.03glotblastn
2830LAB268spikemoss|gb165|DN838885648361699.03glotblastn
2831LAB268spruce|gb162|DR582087648461699.03glotblastn
2832LAB268wheat|gb164|AW448482648561699.03glotblastn
2833LAB268wheat|gb164|CD873027648661699.03glotblastn
2834LAB268eschscholzia|10v1|SRR014116S000127961699.03glotblastn
2835LAB268orobanche|10v1|SRR023189S005700961699.03glotblastn
2836LAB268triphysaria|10v1|SRR023500S002870761699.03glotblastn
2837LAB268basilicum|10v1|DY33624861699.03glotblastn
2838LAB268arabidopsis_lyrata|09v1|JGIAL013923648761699globlastp
2839LAB268artemisia|10v1|GW329205648861699globlastp
2840LAB268artemisia|10v1|SRR019254S0020910648961699globlastp
2841LAB268artemisia|10v1|SRR019254S0048488648961699globlastp
2842LAB268artemisia|10v1|SRR019546S0001094649061699globlastp
2843LAB268artemisia|10v1|SRR019550S0074110648961699globlastp
2844LAB268canola|10v1|CD811609649161699globlastp
2845LAB268chickpea|09v2|GR396286649261699globlastp
2846LAB268eggplant|10v1|FS000288649361699globlastp
2847LAB268eggplant|10v1|FS001540649361699globlastp
2848LAB268jatropha|09v1|GH295594649461699globlastp
2849LAB268lotus|09v1|BW594671649561699globlastp
2850LAB268lotus|09v1|LLGO012754649661699globlastp
2851LAB268medicago|09v1|LLCO512253649761699globlastp
2852LAB268medicago|09v1|LLCO513425649861699globlastp
2853LAB268monkeyflower|10v1|GR010633649961699globlastp
2854LAB268nasturtium|10v1|GH163637649361699globlastp
2855LAB268nasturtium|10v1|SRR032558S0007001649361699globlastp
2856LAB268nasturtium|10v1|SRR032558S0014888649361699globlastp
2857LAB268nasturtium|10v1|SRR032558S0126068649361699globlastp
2858LAB268orobanche|10v1|SRR023189S0015197649361699globlastp
2859LAB268orobanche|10v1|SRR023189S0032180649361699globlastp
2860LAB268orobanche|10v1|SRR023189S0073604649361699globlastp
2861LAB268pea|09v1|EX571047650061699globlastp
2862LAB268physcomitrella|10v1|XM001768153650161699globlastp
2863LAB268physcomitrella|10v1|XM001782794650261699globlastp
2864LAB268pigeonpea|gb171|GR471516650361699globlastp
2865LAB268pine|10v1|DR682322650461699globlastp
2866LAB268pine|10v1|GT259202650461699globlastp
2867LAB268potato|10v1|BG595694649361699globlastp
2868LAB268potato|10v1|BM403808649361699globlastp
2869LAB268rhizophora|10v1|SRR005793S0017626650561699globlastp
2870LAB268solanum_phureja|09v1|SPHBG123365649361699globlastp
2871LAB268solanum_phureja|09v1|SPHBG123501649361699globlastp
2872LAB268solanum_phureja|09v1|SPHBG123908649361699globlastp
2873LAB268solanum_phureja|09v1|SPHBG124249649361699globlastp
2874LAB268solanum_phureja|09v1|SPHBG125424649361699globlastp
2875LAB268solanum_phureja|09v1|SPHBG125445649361699globlastp
2876LAB268solanum_phureja|09v1|SPHBG126504649361699globlastp
2877LAB268solanum_phureja|09v1|SPHBG130199649361699globlastp
2878LAB268solanum_phureja|09v1|SPHBG627699649361699globlastp
2879LAB268solanum_phureja|09v1|SPHCRPSP003816649361699globlastp
2880LAB268solanum_phureja|09v1|SPHCRPSP036363649361699globlastp
2881LAB268sugarcane|10v1|CA111726650661699globlastp
2882LAB268tomato|09v1|BG123908649361699globlastp
2883LAB268tomato|09v1|BG126504649361699globlastp
2884LAB268tomato|09v1|CN216197649361699globlastp
2885LAB268tragopogon|10v1|SRR020205S0007187650761699globlastp
2886LAB268amborella|gb166|CK763863648961699globlastp
2887LAB268antirrhinum|gb166|AJ799109650861699globlastp
2888LAB268apple|gb171|CN443956650961699globlastp
2889LAB268apple|gb171|CN489447650961699globlastp
2890LAB268apple|gb171|CN490043650961699globlastp
2891LAB268apple|gb171|CN491079650961699globlastp
2892LAB268apple|gb171|CN997061650961699globlastp
2893LAB268apple|gb171|CN997883650961699globlastp
2894LAB268apple|gb171|CO065741650961699globlastp
2895LAB268apple|gb171|CO415792650961699globlastp
2896LAB268apple|gb171|CO416659650961699globlastp
2897LAB268artemisia|gb164|EY053904651061699globlastp
2898LAB268avocado|gb164|CK754635648961699globlastp
2899LAB268b_rapa|gb162|CX271147651161699globlastp
2900LAB268barley|10v1|BG342998651261699globlastp
2901LAB268barley|gb157SOLEXA|AL505955651261699globlastp
2902LAB268barley|gb157SOLEXA|BG416680651361699globlastp
2903LAB268basilicum|10v1|DY323944648961699globlastp
2904LAB268cenchrus|gb166|EB654992651461699globlastp
2905LAB268cenchrus|gb166|EB665044651561699globlastp
2906LAB268cynara|gb167|GE589503651361699globlastp
2907LAB268cynara|gb167|GE601275651661699globlastp
2908LAB268ginger|gb164|DY362774651761699globlastp
2909LAB268kiwi|gb166|FG412369651861699globlastp
2910LAB268kiwi|gb166|FG511349651961699globlastp
2911LAB268lettuce|10v1|DW049144652061699globlastp
2912LAB268lettuce|gb157.2|DW154476652161699globlastp
2913LAB268marchantia|gb166|AU081695652261699globlastp
2914LAB268marchantia|gb166|AU081848652261699globlastp
2915LAB268marchantia|gb166|BJ849115652261699globlastp
2916LAB268medicago|gb157.2|AJ498325652361699globlastp
2917LAB268melon|gb165|AM732498652461699globlastp
2918LAB268oil_palm|gb166|EY396434648961699globlastp
2919LAB268onion|gb162|AA451589652561699globlastp
2920LAB268ostreococcus|gb162|XM001415987652661699globlastp
2921LAB268ostreococcus|gb162|XM001420298652661699globlastp
2922LAB268pepper|gb171|AA840708649361699globlastp
2923LAB268pepper|gb171|AA840801649361699globlastp
2924LAB268pepper|gb171|BM065365649361699globlastp
2925LAB268pepper|gb171|BM065900649361699globlastp
2926LAB268pepper|gb171|BM066186649361699globlastp
2927LAB268pepper|gb171|BM066215649361699globlastp
2928LAB268pepper|gb171|BM068037649361699globlastp
2929LAB268pepper|gb171|CA519950649361699globlastp
2930LAB268pepper|gb171|GD058514649361699globlastp
2931LAB268pepper|gb171|GD068989649361699globlastp
2932LAB268pepper|gb171|GD109617649361699globlastp
2933LAB268petunia|gb171|AY650011652761699globlastp
2934LAB268petunia|gb171|FN003085652861699globlastp
2935LAB268petunia|gb171|FN003987650461699globlastp
2936LAB268pine|10v1|AA739509650461699globlastp
2937LAB268pine|gb157.2|AA739509650461699globlastp
2938LAB268pine|10v1|AW064813650461699globlastp
2939LAB268pine|gb157.2|AW064813650461699globlastp
2940LAB268pine|gb157.2|BX250390650461699globlastp
2941LAB268pine|10v1|CX715301650461699globlastp
2942LAB268pine|gb157.2|CX715301650461699globlastp
2943LAB268pine|10v1|BX679616650461699globlastp
2944LAB268potato|gb157.2|BE923376649361699globlastp
2945LAB268potato|10v1|BF054460649361699globlastp
2946LAB268potato|gb157.2|BF054460649361699globlastp
2947LAB268potato|10v1|BM109083649361699globlastp
2948LAB268potato|gb157.2|BM405205649361699globlastp
2949LAB268potato|10v1|BM407657648961699globlastp
2950LAB268potato|10v1|BQ512707649361699globlastp
2951LAB268potato|gb157.2|BQ514906649361699globlastp
2952LAB268potato|10v1|BQ518377649361699globlastp
2953LAB268radish|gb164|EV536543652961699globlastp
2954LAB268radish|gb164|EV546187653061699globlastp
2955LAB268radish|gb164|EV567987650861699globlastp
2956LAB268radish|gb164|EX762693653161699globlastp
2957LAB268radish|gb164|EX902598653261699globlastp
2958LAB268rye|gb164|BE493960648961699globlastp
2959LAB268rye|gb164|BE494160648961699globlastp
2960LAB268rye|gb164|BE494831648961699globlastp
2961LAB268rye|gb164|BE495294653361699globlastp
2962LAB268spruce|gb162|CO215151650461699globlastp
2963LAB268spruce|gb162|CO237421650461699globlastp
2964LAB268spruce|gb162|DR481285650461699globlastp
2965LAB268spruce|gb162|DR495585650461699globlastp
2966LAB268spruce|gb162|DR575192650461699globlastp
2967LAB268spurge|gb161|DV113675653461699globlastp
2968LAB268sugarcane|gb157.3|CA102127653561699globlastp
2969LAB268sugarcane|gb157.3|CA127979653661699globlastp
2970LAB268sugarcane|gb157.3|CA128041653761699globlastp
2971LAB268sugarcane|gb157.3|CA241735653861699globlastp
2972LAB268sunflower|gb162|CF090846649161699globlastp
2973LAB268tamarix|gb166|EG971827653961699globlastp
2974LAB268tobacco|gb162|BQ843074654061699globlastp
2975LAB268tobacco|gb162|EB683839650461699globlastp
2976LAB268tomato|09v1|BG123365649361699globlastp
2977LAB268tomato|09v1|BG123501649361699globlastp
2978LAB268tomato|gb164|BG123501649361699globlastp
2979LAB268tomato|gb164|BG123908649361699globlastp
2980LAB268tomato|09v1|BG124249649361699globlastp
2981LAB268tomato|gb164|BG124249649361699globlastp
2982LAB268tomato|09v1|BG125424649361699globlastp
2983LAB268tomato|09v1|BG125445649361699globlastp
2984LAB268tomato|gb164|BG125445649361699globlastp
2985LAB268tomato|09v1|BG126455649361699globlastp
2986LAB268tomato|09v1|BG130199649361699globlastp
2987LAB268triphysaria|gb164|BM357139654161699globlastp
2988LAB268walnuts|gb166|EL892095654261699globlastp
2989LAB268lettuce|10v1|DW052505652161699globlastp
2990LAB268potato|10v1|BQ514906649361699globlastp
2991LAB268rose|10v1|EC586553654361699globlastp
2992LAB268arabidopsis_lyrata|09v1|CRPALE018329654461698.1globlastp
2993LAB268artemisia|10v1|SRR019254S0005641654561698.1globlastp
2994LAB268artemisia|10v1|SRR019254S0085816654461698.1globlastp
2995LAB268gerbera|09v1|AJ753834654461698.1globlastp
2996LAB268pine|10v1|GT260140654661698.1globlastp
2997LAB268potato|10v1|BE923376654761698.1globlastp
2998LAB268tomato|09v1|BF054460654861698.1globlastp
2999LAB268artemisia|gb164|EY035013654961698.1globlastp
3000LAB268artemisia|gb164|EY037977654461698.1globlastp
3001LAB268artemisia|gb164|EY056079655061698.1globlastp
3002LAB268banana|gb167|FL659268655161698.1globlastp
3003LAB268barley|gb157SOLEXA|BG416840655261698.1globlastp
3004LAB268cassava|gb164|BM259754655361698.1globlastp
3005LAB268cryptomeria|gb166|AU299923655461698.1globlastp
3006LAB268cynara|gb167|GE596075655561698.1globlastp
3007LAB268lettuce|gb157.2|DW085444654461698.1globlastp
3008LAB268lettuce|gb157.2|DW123180655661698.1globlastp
3009LAB268lettuce|gb157.2|DW145765655661698.1globlastp
3010LAB268lovegrass|gb167|EH187368655761698.1globlastp
3011LAB268medicago|gb157.2|AL379622655861698.1globlastp
3012LAB268nicotiana_benthamiana|gb162|CN746600655961698.1globlastp
3013LAB268petunia|gb171|CV296942656061698.1globlastp
3014LAB268petunia|gb171|FN008035656161698.1globlastp
3015LAB268pine|gb157.2|DN611308656261698.1globlastp
3016LAB268potato|10v1|CK249827655461698.1globlastp
3016LAB268potato|gb157.2|CK249827667361693.5globlastp
3017LAB268potato|10v1|CV475517656361698.1globlastp
3018LAB268pseudoroegneria|gb167|FF366172656461698.1globlastp
3019LAB268radish|gb164|FD937807656561698.1globlastp
3020LAB268rye|gb164|BE587390656661698.1globlastp
3021LAB268sugarcane|gb157.3|CA072969656761698.1globlastp
3022LAB268sugarcane|gb157.3|CA111743656861698.1globlastp
3023LAB268sugarcane|gb157.3|CA140464656961698.1globlastp
3024LAB268walnuts|gb166|EL894813657061698.1globlastp
3025LAB268zinnia|gb171|AU290856654461698.1globlastp
3026LAB268pine|10v1|DR694482657161698.1globlastp
3027LAB268artemisia|10v1|SRR019254S0090211657261698.06glotblastn
3028LAB268sugarcane|gb157.3|CA116605657361698.06glotblastn
3029LAB268wheat|gb164|BJ315666657461698.06glotblastn
3030LAB268wheat|gb164|CA623503657561698.06glotblastn
3031LAB268wheat|gb164|CA630334657661698.06glotblastn
3032LAB268artemisia|10v1|SRR019254S002222761698.06glotblastn
3033LAB268artemisia|10v1|SRR019254S021691261698.06glotblastn
3034LAB268dandelion|gb161|DY84060861698.06glotblastn
3035LAB268tea|gb171|FE86132261698.06glotblastn
3036LAB268radish|gb164|EW726563657761697.2globlastp
3037LAB268avocado|10v1|CO995142657861697.1globlastp
3038LAB268orobanche|10v1|SRR023495S0084187657861697.1globlastp
3039LAB268apple|gb171|CN494677657961697.1globlastp
3040LAB268maize|gb170|LLFL427387658061697.1globlastp
3041LAB268pine|10v1|CF388178658161697.1globlastp
3041LAB268pine|gb157.2|CF388178696361684.7globlastp
3042LAB268pine|gb157.2|DR694482658261697.1globlastp
3043LAB268rose|gb157.2|EC586553658361697.1globlastp
3044LAB268soybean|gb168|CA898703658461697.1globlastp
3045LAB268sugarcane|gb157.3|CA213810658561697.1globlastp
3046LAB268tobacco|gb162|AJ633035658661697.1globlastp
3047LAB268volvox|gb162|BU645998658761697.1globlastp
3048LAB268volvox|gb162|CBGZ25401FWD658761697.1globlastp
3049LAB268volvox|gb162|MDLJGIVOLCA1102100658761697.1globlastp
3050LAB268volvox|gb162|MDLJGIVOLCA1102370658761697.1globlastp
3051LAB268volvox|gb162|MDLJGIVOLCA155291658761697.1globlastp
3052LAB268volvox|gb162|MDLJGIVOLCA155542658761697.1globlastp
3053LAB268volvox|gb162|MDLJGIVOLCA156769658761697.1globlastp
3054LAB268volvox|gb162|MDLJGIVOLCA163165658761697.1globlastp
3055LAB268volvox|gb162|MDLJGIVOLCA188140658761697.1globlastp
3056LAB268zinnia|gb171|DV017431658861697.1globlastp
3057LAB268artemisia|10v1|SRR019546S0127820658961697.09glotblastn
3058LAB268artemisia|10v1|SRR019547S0487952659061697.09glotblastn
3059LAB268artemisia|10v1|SRR019550S0086000659161697.09glotblastn
3060LAB268gerbera|09v1|AJ755846659261697.09glotblastn
3061LAB268amborella|gb166|FD427255659361697.09glotblastn
3062LAB268cotton|gb164|DW484397659461697.09glotblastn
3063LAB268ipomoea|gb157.2|DV034788659561697.09glotblastn
3064LAB268rose|gb157.2|EC587467659661697.09glotblastn
3065LAB268volvox|gb162|MDLJGIVOLCA1103472659761697.09glotblastn
3066LAB268volvox|gb162|MDLJGIVOLCA1108939659861697.09glotblastn
3067LAB268basilicum|gb157.3|DY33624861697.09glotblastn
3068LAB268lettuce|gb157.2|DW049814659961696.3globlastp
3069LAB268sunflower|gb162|CF088050660061696.3globlastp
3070LAB268nasturtium|10v1|SRR032563S0097524660161696.2globlastp
3071LAB268basilicum|gb157.3|DY323944660261696.2globlastp
3072LAB268monkeyflower|10v1|DV206995660361696.12glotblastn
3073LAB268oat|10v1|GO585940660461696.12glotblastn
3074LAB268oat|10v1|GO586224660561696.12glotblastn
3075LAB268oat|10v1|GO586484660661696.12glotblastn
3076LAB268oat|10v1|GO586800660761696.12glotblastn
3077LAB268oat|10v1|CN814783660861696.12glotblastn
3078LAB268sugarcane|gb157.3|CA082940660961696.12glotblastn
3079LAB268wheat|gb164|CA617786661061696.12glotblastn
3080LAB268wheat|gb164|CA618960661161696.12glotblastn
3081LAB268sunflower|gb162|DY95916261696.12glotblastn
3082LAB268artemisia|10v1|SRR019254S0002617661261696.1globlastp
3083LAB268fescue|gb161|DT686102661361696.1globlastp
3084LAB268fescue|gb161|DT690378661461696.1globlastp
3085LAB268senecio|gb170|DY663617661461696.1globlastp
3086LAB268spurge|gb161|DV116777661561696.1globlastp
3087LAB268sugarcane|gb157.3|CA226811661661696.1globlastp
3088LAB268tobacco|gb162|AM838335661761696.1globlastp
3089LAB268canola|gb161|CX193674661861695.4globlastp
3090LAB268rye|gb164|BE636849661961695.4globlastp
3091LAB268triphysaria|gb164|EX999279662061695.4globlastp
3092LAB268wheat|gb164|BE591511662161695.4globlastp
3093LAB268canola|gb161|EE502343662261695.3globlastp
3094LAB268chickpea|09v2|GR398035662361695.15glotblastn
3095LAB268oat|10v1|CN821564662461695.15glotblastn
3096LAB268oat|10v1|GO586658662561695.15glotblastn
3097LAB268oat|10v1|GR332308662661695.15glotblastn
3098LAB268oat|10v1|GR365369662761695.15glotblastn
3099LAB268eucalyptus|gb166|CD668166662861695.15glotblastn
3100LAB268onion|gb162|BI095512662961695.15glotblastn
3101LAB268pine|gb157.2|AW697623663061695.15glotblastn
3102LAB268rye|gb164|BE705751663161695.15glotblastn
3103LAB268sugarcane|gb157.3|CA215987663261695.15glotblastn
3104LAB268tea|gb171|CV014626663361695.15glotblastn
3105LAB268triphysaria|gb164|EY019376663461695.15glotblastn
3106LAB268wheat|gb164|CA620392663561695.15glotblastn
3107LAB268wheat|gb164|CK202277663661695.15glotblastn
3108LAB268artemisia|10v1|SRR019254S0011984663761695.1globlastp
3109LAB268artemisia|10v1|SRR019254S0031076663861695.1globlastp
3110LAB268artemisia|10v1|SRR019552S0240607663761695.1globlastp
3111LAB268oat|10v1|GR359321663961695.1globlastp
3112LAB268liriodendron|gb166|FD495606664061695.1globlastp
3113LAB268maize|gb170|LLBE512363664161695.1globlastp
3114LAB268medicago|09v1|LLAJ500188664261695.1globlastp
3115LAB268medicago|gb157.2|AJ500188664261695.1globlastp
3116LAB268oat|gb164|CN821564664361695.1globlastp
3117LAB268rose|gb157.2|EC589151664461695.1globlastp
3118LAB268wheat|gb164|CA601913664561695.1globlastp
3119LAB268tobacco|gb162|CN949751664661694.4globlastp
3120LAB268wheat|gb164|CA652102664761694.4globlastp
3121LAB268poplar|gb170|CA823688664861694.3globlastp
3122LAB268wheat|gb164|BG606703664961694.3globlastp
3123LAB268wheat|gb164|CA711773665061694.23glotblastn
3124LAB268artemisia|10v1|SRR019254S0542206665161694.2globlastp
3125LAB268rhizophora|10v1|SRR005793S0076222665261694.2globlastp
3126LAB268barley|gb157SOLEXA|BF625158665361694.2globlastp
3127LAB268barley|gb157SOLEXA|BG417494665461694.2globlastp
3128LAB268barley|gb157SOLEXA|BI959450665561694.2globlastp
3129LAB268centaurea|gb166|EH741518665661694.2globlastp
3130LAB268maize|gb170|LLBE509909665761694.2globlastp
3131LAB268maize|gb170|LLDN221334665861694.2globlastp
3132LAB268maize|gb170|LLFL303881665961694.2globlastp
3133LAB268sugarcane|gb157.3|CA129712666061694.2globlastp
3134LAB268triphysaria|gb164|EY011518666161694.2globlastp
3135LAB268triphysaria|gb164|EY133021666261694.2globlastp
3136LAB268oat|10v1|CN819743666361694.17glotblastn
3137LAB268oat|10v1|GO586171666461694.17glotblastn
3138LAB268lettuce|10v1|DW046141666561694.17glotblastn
3139LAB268lettuce|gb157.2|DW046141666561694.17glotblastn
3140LAB268lettuce|gb157.2|DW160543666661694.17glotblastn
3141LAB268lovegrass|gb167|EH194643666761694.17glotblastn
3142LAB268sunflower|gb162|DY958196666861694.17glotblastn
3143LAB268ginseng|10v1|GR871574666961693.6globlastp
3144LAB268medicago|gb157.2|AL366664667061693.6globlastp
3145LAB268sunflower|gb162|CD851214667161693.6globlastp
3146LAB268wheat|gb164|CJ880722667261693.6globlastp
3147LAB268bean|gb167|FE709035667461693.3globlastp
3148LAB268pine|gb157.2|CN852349667461693.3globlastp
3149LAB268artemisia|10v1|SRR019254S0003873667561693.2globlastp
3150LAB268artemisia|10v1|SRR019254S0123773667661693.2globlastp
3151LAB268artemisia|10v1|SRR019254S0145628667761693.2glotblastn
3152LAB268barley|10v1|AJ434335667861693.2glotblastn
3153LAB268oat|10v1|GR358555667961693.2globlastp
3154LAB268orobanche|10v1|SRR023189S0034388667661693.2globlastp
3155LAB268barley|gb157SOLEXA|BF258395668061693.2globlastp
3156LAB268cacao|gb167|CU472310668161693.2globlastp
3157LAB268cowpea|gb166|FF394656668261693.2glotblastn
3158LAB268iceplant|gb164|BE035501668361693.2glotblastn
3159LAB268maize|gb170|LLAW179408668461693.2glotblastn
3160LAB268maize|gb170|LLCD997639668561693.2globlastp
3161LAB268maize|gb170|LLFL027196668661693.2glotblastn
3162LAB268maize|gb170|LLFL303809668761693.2glotblastn
3163LAB268maize|gb170|LLFL319760668861693.2globlastp
3164LAB268onion|gb162|ES449597667561693.2globlastp
3165LAB268peanut|gb171|GO335559668961693.2globlastp
3166LAB268soybean|gb168|SB2GWP105728669061693.2globlastp
3167LAB268sugarcane|gb157.3|CA256731669161693.2glotblastn
3168LAB268triphysaria|gb164|EX994401667661693.2globlastp
3169LAB268wheat|gb164|CA608777669261693.2glotblastn
3170LAB268wheat|gb164|CJ833410669361693.2globlastp
3171LAB268zinnia|gb171|DV017189667661693.2globlastp
3172LAB268zinnia|gb171|DV017366667661693.2globlastp
3173LAB268zinnia|gb171|DV017419667661693.2globlastp
3174LAB268senecio|gb170|DY66159161693.2glotblastn
3175LAB268radish|gb164|EV528352669461692.8globlastp
3176LAB268wheat|gb164|BJ211841669561692.8globlastp
3177LAB268wheat|gb164|CA729136669661692.8globlastp
3178LAB268spurge|gb161|BI946403669761692.6globlastp
3179LAB268maize|gb170|LLBM268739669861692.3globlastp
3180LAB268ipomoea|gb157.2|EE881854669961692.23glotblastn
3180LAB268ipomoea_batatas|10v1|EE881854670261692.2globlastp
3181LAB268maize|gb170|LLEG077297670061692.23glotblastn
3182LAB268melon|gb165|DV632781670161692.23glotblastn
3183LAB268salvia|10v1|SRR014553S0015933670361692.2globlastp
3184LAB268tragopogon|10v1|SRR020205S0178366670361692.2globlastp
3185LAB268b_rapa|gb162|EX133290670461692.2globlastp
3186LAB268barley|gb157SOLEXA|BM370668670561692.2globlastp
3187LAB268cacao|gb167|CU469633670661692.2globlastp
3188LAB268sugarcane|gb157.3|CA241052670761692.2globlastp
3189LAB268cotton|gb164|BF270999670861692globlastp
3190LAB268dandelion|gb161|DY836577670961692globlastp
3191LAB268radish|gb164|EV529345671061692globlastp
3192LAB268tomato|gb164|BG130199671161691.9globlastp
3193LAB268wheat|gb164|CA711406671261691.9globlastp
3194LAB268artemisia|10v1|EY056079671361691.3globlastp
3195LAB268canola|10v1|GT085139671461691.3globlastp
3196LAB268heritiera|10v1|SRR005795S0031594671561691.3globlastp
3197LAB268oat|10v1|GR361209671661691.3globlastp
3198LAB268oat|10v1|GR361398671661691.3globlastp
3199LAB268barley|gb157SOLEXA|CD056360671661691.3globlastp
3200LAB268bruguiera|gb166|BP939745671361691.3globlastp
3201LAB268fern|gb171|DK959947671761691.3globlastp
3202LAB268maize|gb170|LLCF021239671861691.3globlastp
3203LAB268maize|gb170|LLFL026667671961691.3globlastp
3204LAB268maize|gb170|LLFL367469672061691.3globlastp
3205LAB268spruce|gb162|CO210449672161691.3globlastp
3206LAB268spruce|gb162|CO478069671661691.3globlastp
3207LAB268spruce|gb162|ES256096672261691.3globlastp
3208LAB268spruce|gb162|EX306950671661691.3globlastp
3209LAB268spruce|gb162|EX309778672361691.3globlastp
3210LAB268sugarcane|gb157.3|CA245664672461691.3globlastp
3211LAB268sugarcane|gb157.3|CA281611671661691.3globlastp
3212LAB268tamarix|gb166|EG969617672361691.3globlastp
3213LAB268wheat|gb164|CA686942671661691.3globlastp
3214LAB268barley|10v1|BE437542672561691.26glotblastn
3215LAB268tea|10v1|CV013790672661691.26glotblastn
3216LAB268barley|gb157SOLEXA|BG415721672761691.26glotblastn
3217LAB268dandelion|gb161|DY836671672861691.26glotblastn
3218LAB268peanut|gb171|EH043386672961691.26glotblastn
3219LAB268spruce|gb162|ES249576673061691.26glotblastn
3220LAB268sunflower|gb162|CF082956673161691.26glotblastn
3221LAB268volvox|gb162|AW676472673261691.26glotblastn
3222LAB268wheat|gb164|CA706348673361691.26glotblastn
3223LAB268wheat|gb164|CJ639897673461691.26glotblastn
3224LAB268wheat|gb164|DR044938673561691.26glotblastn
3225LAB268b_juncea|gb164|EVGN00680114742616673661691.2globlastp
3226LAB268beet|gb162|BI543915673761691.2globlastp
3227LAB268cassava|gb164|BM260241673861691.2globlastp
3228LAB268melon|gb165|DV632791673961691.2globlastp
3229LAB268strawberry|gb164|EX663851674061691.2globlastp
3230LAB268sunflower|gb162|CD849382674161691.2globlastp
3231LAB268sunflower|gb162|CD849751674261691.2globlastp
3232LAB268sunflower|gb162|CD850210674361691.2globlastp
3233LAB268beet|gb162|BQ588711674461691.1globlastp
3234LAB268spruce|gb162|EX415867674561691.1globlastp
3235LAB268potato|gb157.2|BQ518377674661691globlastp
3236LAB268volvox|gb162|MDLJGIVOLCA178755674761690.9globlastp
3237LAB268oat|10v1|GR364347674861690.7globlastp
3238LAB268b_rapa|gb162|EX115114674961690.4globlastp
3239LAB268dandelion|gb161|DY837249675061690.4globlastp
3240LAB268oil_palm|gb166|EL681099675161690.4globlastp
3241LAB268wheat|gb164|AL820678675261690.4globlastp
3242LAB268wheat|gb164|CA611188675361690.4globlastp
3243LAB268wheat|gb164|BU672653675461690.38glotblastn
3244LAB268artemisia|10v1|SRR019254S0032901675561690.3globlastp
3245LAB268canola|10v1|CD812509675661690.3globlastp
3246LAB268eschscholzia|10v1|CD480997675661690.3globlastp
3247LAB268barley|gb157SOLEXA|BI948748675761690.3globlastp
3248LAB268cacao|gb167|CU614547675861690.3globlastp
3249LAB268melon|gb165|AM721598675961690.3globlastp
3250LAB268papaya|gb165|EX272338676061690.3globlastp
3251LAB268potato|gb157.2|CV492347676161690.3globlastp
3252LAB268spruce|gb162|ES253259676261690.3globlastp
3253LAB268sunflower|gb162|CF086418676361690.3globlastp
3254LAB268artemisia|10v1|SRR019254S003005361690.29glotblastn
3255LAB268ipomoea_batatas|10v1|DV03672661690.29glotblastn
3256LAB268ipomoea|gb157.2|DV03672661690.29glotblastn
3257LAB268sunflower|gb162|CF077698676461690.1globlastp
3258LAB268artemisia|10v1|SRR019550S0172069676561689.6globlastp
3259LAB268arabidopsis|gb165|AT2G28740676661689.6globlastp
3260LAB268cowpea|gb166|FC459371676761689.6globlastp
3261LAB268fescue|gb161|DT687184676861689.6globlastp
3262LAB268lettuce|gb157.2|DW045072676961689.6globlastp
3263LAB268lettuce|gb157.2|DW119855677061689.6globlastp
3264LAB268lettuce|gb157.2|DW140646677161689.6globlastp
3265LAB268medicago|gb157.2|AL378431677261689.6globlastp
3266LAB268wheat|gb164|BE422710677361689.6globlastp
3267LAB268triphysaria|gb164|BE574792677461689.52glotblastn
3268LAB268potato|gb157.2|BQ512707677561689.5globlastp
3269LAB268pseudoroegneria|gb167|FF366170677661689.5globlastp
3270LAB268wheat|gb164|BQ838511677761689.5globlastp
3271LAB268eucalyptus|gb166|CT981403677861689.4globlastp
3272LAB268barley|10v1|BG299823677961689.32glotblastn
3273LAB268solanum_phureja|09v1|SPHBF054460678061689.32glotblastn
3274LAB268wheat|gb164|CA607090678161689.32glotblastn
3275LAB268barley|gb157SOLEXA|BI949366678261689.32glotblastn
3276LAB268barley|10v1|BM370668678361689.32glotblastn
3277LAB268lettuce|gb157.2|DW122372678461689.32glotblastn
3278LAB268maize|gb170|LLFL027108678561689.32glotblastn
3279LAB268strawberry|gb164|CO817468678661689.32glotblastn
3280LAB268triphysaria|gb164|EY015990678761689.32glotblastn
3281LAB268wheat|gb164|CA598647678861689.32glotblastn
3282LAB268artemisia|10v1|SRR019254S0032449678961689.3globlastp
3283LAB268barley|10v1|BE455800679061689.3globlastp
3284LAB268barley|10v1|CV054877679061689.3globlastp
3285LAB268apple|gb171|EB138544679161689.3globlastp
3286LAB268bean|gb167|FG229977679261689.3globlastp
3287LAB268fescue|gb161|DT685923679361689.3globlastp
3288LAB268oat|10v1|GO586215679461689.2globlastp
3289LAB268medicago|09v1|LLEL563523679561689.1globlastp
3290LAB268lettuce|10v1|DW053970679661688.89glotblastn
3291LAB268b_juncea|gb164|EVGN00255111393429679761688.8globlastp
3292LAB268cotton|gb164|ES825038679861688.8globlastp
3293LAB268fescue|gb161|DT686778679961688.8globlastp
3294LAB268lettuce|gb157.2|DW074962680061688.8globlastp
3295LAB268medicago|gb157.2|AL366317680161688.8globlastp
3296LAB268rye|gb164|BE493864680261688.8globlastp
3297LAB268rye|gb164|BE637133680361688.8globlastp
3298LAB268sunflower|gb162|CD849947680461688.8globlastp
3299LAB268triphysaria|gb164|BM357495680561688.8globlastp
3300LAB268radish|gb164|EY934820680661688.7globlastp
3301LAB268spruce|gb162|DR543346680761688.7globlastp
3302LAB268tomato|gb164|BG125424680861688.7globlastp
3303LAB268artemisia|10v1|SRR019254S0000755680961688.6globlastp
3304LAB268sunflower|gb162|EE652838681061688.5globlastp
3305LAB268wheat|gb164|CA702608681161688.5globlastp
3306LAB268barley|gb157SOLEXA|BF624980681261688.35glotblastn
3307LAB268barley|gb157SOLEXA|BM375641681361688.35glotblastn
3308LAB268barley|gb157SOLEXA|CV062231681461688.35glotblastn
3309LAB268cacao|gb167|CU472080681561688.35glotblastn
3310LAB268maize|gb170|LLFL121319681661688.35glotblastn
3311LAB268maize|gb170|LLFL290833681761688.35glotblastn
3312LAB268sugarcane|gb157.3|CA124638681861688.35glotblastn
3313LAB268sugarcane|gb157.3|CA129028681961688.35glotblastn
3314LAB268sugarcane|10v1|CA286333682061688.35glotblastn
3315LAB268sugarcane|gb157.3|CA286333682061688.35glotblastn
3316LAB268wheat|gb164|BJ309601682161688.35glotblastn
3317LAB268wheat|gb164|CA607921682261688.35glotblastn
3318LAB268wheat|gb164|CK170457682361688.35glotblastn
3319LAB268barley|10v1|BI948748682461688.3globlastp
3320LAB268barley|10v1|CD056360682561688.3globlastp
3321LAB268cassava|gb164|DB925963682661688.3globlastp
3322LAB268cenchrus|gb166|EB661022682761688.3globlastp
3323LAB268eucalyptus|gb166|CD668068682861688.3globlastp
3324LAB268prunus|gb167|CB819033682961688.3globlastp
3325LAB268avocado|gb164|CK754489683061688globlastp
3326LAB268b_rapa|gb162|L33581683161688globlastp
3327LAB268cowpea|gb166|FF387598683261688globlastp
3328LAB268fescue|gb161|DT686507683361688globlastp
3329LAB268fescue|gb161|DT686700683461688globlastp
3330LAB268ginger|gb164|DY350509683561688globlastp
3331LAB268lettuce|gb157.2|DW105457683661688globlastp
3332LAB268medicago|gb157.2|AL380016683761688globlastp
3333LAB268radish|gb164|EW714623683861688globlastp
3334LAB268sunflower|gb162|CD849277683961688globlastp
3335LAB268sunflower|gb162|CD851055684061688globlastp
3336LAB268wheat|gb164|BE416157684161688globlastp
3337LAB268wheat|gb164|BE417363684261688globlastp
3338LAB268wheat|gb164|BE499108684361688globlastp
3339LAB268wheat|gb164|BG608114684461688globlastp
3340LAB268wheat|gb164|CJ646588684561688globlastp
3341LAB268wheat|gb164|CA635795684661687.5glotblastn
3342LAB268artemisia|10v1|EY032843684761687.4globlastp
3343LAB268artemisia|10v1|SRR019254S0041967684761687.4globlastp
3344LAB268kiwi|gb166|FG431516684861687.4globlastp
3345LAB268nuphar|gb166|CD474059684961687.4globlastp
3346LAB268pine|gb157.2|DT638657685061687.4globlastp
3347LAB268sesame|gb157.2|BU667917685161687.4globlastp
3348LAB268sugarcane|10v1|CA106117685261687.4globlastp
3349LAB268sugarcane|gb157.3|CA085023685261687.4globlastp
3350LAB268sugarcane|gb157.3|CA115738685361687.4globlastp
3351LAB268sugarcane|10v1|CA129028685461687.4globlastp
3352LAB268sunflower|gb162|BQ974944685561687.4globlastp
3353LAB268wheat|gb164|CJ578594685661687.4globlastp
3354LAB268barley|10v1|BE412620685761687.38glotblastn
3355LAB268b_juncea|gb164|EVGN00529211853307685861687.3globlastp
3356LAB268fescue|gb161|DT688459685961687.3globlastp
3357LAB268lotus|gb157.2|CN825630686061687.3globlastp
3358LAB268radish|gb164|EV527978686161687.3globlastp
3359LAB268rose|gb157.2|EC588926686261687.3globlastp
3360LAB268rye|gb164|BE586695686361687.3globlastp
3361LAB268sunflower|gb162|CD848230686461687.3globlastp
3362LAB268wheat|gb164|BE415928686561687.3globlastp
3363LAB268wheat|gb164|BE438441686661687.3globlastp
3364LAB268wheat|gb164|BE493582686761687.3globlastp
3365LAB268wheat|gb164|BE518452686861687.3globlastp
3366LAB268wheat|gb164|BF292946686961687.3globlastp
3367LAB268wheat|gb164|BJ223844687061687.3globlastp
3368LAB268avocado|gb164|CK750317687161687.2globlastp
3369LAB268lettuce|gb157.2|DW052423687261687.2globlastp
3370LAB268strawberry|gb164|CO817177687361687globlastp
3371LAB268onion|gb162|BQ579926687461686.79glotblastn
3372LAB268wheat|gb164|CK168652687561686.7globlastp
3373LAB268avocado|gb164|CO995142687661686.6globlastp
3374LAB268b_rapa|gb162|CX267515687761686.6globlastp
3375LAB268grape|gb160|BQ794122687861686.6globlastp
3376LAB268lettuce|gb157.2|DW047728687961686.6globlastp
3377LAB268lettuce|gb157.2|DW059381688061686.6globlastp
3378LAB268lotus|gb157.2|BW597052688161686.6globlastp
3379LAB268rye|gb164|BE495019688261686.6globlastp
3380LAB268spurge|gb161|DV113688688361686.6globlastp
3381LAB268sunflower|gb162|EE651618688461686.6globlastp
3382LAB268triphysaria|gb164|EY005632688561686.6globlastp
3383LAB268wheat|gb164|AL826630688661686.6globlastp
3384LAB268wheat|gb164|BE405172688761686.6globlastp
3385LAB268wheat|gb164|BE417224688861686.6globlastp
3386LAB268wheat|gb164|CA618316688961686.6globlastp
3387LAB268cenchrus|gb166|EB672104689061686.41glotblastn
3388LAB268maize|gb170|LLFL430119689161686.41glotblastn
3389LAB268sugarcane|gb157.3|CA241139689261686.41glotblastn
3390LAB268wheat|gb164|CJ634647689361686.41glotblastn
3391LAB268canola|10v1|EE455340689461686.4globlastp
3392LAB268gerbera|09v1|AJ753672689461686.4globlastp
3393LAB268barley|gb157SOLEXA|BF258586689561686.4globlastp
3394LAB268barley|gb157SOLEXA|BY850447689661686.4globlastp
3395LAB268cotton|gb164|BF275139689761686.4globlastp
3396LAB268fescue|gb161|DT690081689461686.4globlastp
3397LAB268potato|gb157.2|BM109083689861686.4globlastp
3398LAB268spruce|gb162|EX375049689961686.4globlastp
3399LAB268tomato|gb164|BG126455690061686.4globlastp
3400LAB268artemisia|gb164|EY034318690161685.8globlastp
3401LAB268artemisia|gb164|EY048377690261685.8globlastp
3402LAB268bean|gb167|CA898706690361685.8globlastp
3403LAB268canola|gb161|CD812235690461685.8globlastp
3404LAB268cowpea|gb166|FC456793690561685.8globlastp
3405LAB268fescue|gb161|DT689099690661685.8globlastp
3406LAB268fescue|gb161|DT689969690761685.8globlastp
3407LAB268grape|gb160|CB970763690861685.8globlastp
3408LAB268lettuce|gb157.2|DW054334690961685.8globlastp
3409LAB268lettuce|gb157.2|DW075486691061685.8globlastp
3410LAB268lettuce|gb157.2|DW105307691161685.8globlastp
3411LAB268lettuce|gb157.2|DW108025691261685.8globlastp
3412LAB268rose|gb157.2|EC587851691361685.8globlastp
3413LAB268sunflower|gb162|CD848228691461685.8globlastp
3414LAB268sunflower|gb162|CD850844691561685.8globlastp
3415LAB268sunflower|gb162|CD850923691661685.8globlastp
3416LAB268wheat|gb164|BE399592691761685.8globlastp
3417LAB268wheat|gb164|BE405116691861685.8globlastp
3418LAB268wheat|gb164|BE518109691961685.8globlastp
3419LAB268wheat|gb164|BJ311599692061685.8globlastp
3420LAB268wheat|gb164|CA651602692161685.8globlastp
3421LAB268wheat|gb164|CA718879692261685.8globlastp
3422LAB268wheat|gb164|CD453642692361685.8globlastp
3423LAB268rye|gb164|BE494409692461685.7globlastp
3424LAB268triphysaria|gb164|EX999992692561685.7globlastp
3425LAB268wheat|gb164|CA622006692661685.7globlastp
3426LAB268oil_palm|gb166|CN600292692761685.6globlastp
3427LAB268barley|10v1|CV062231692861685.44glotblastn
3428LAB268wheat|gb164|CA624635692961685.44glotblastn
3429LAB268triphysaria|gb164|EX98831061685.44glotblastn
3430LAB268artemisia|10v1|SRR019254S0057308693061685.4globlastp
3431LAB268pea|09v1|EX570524693161685.4globlastp
3432LAB268pea|09v1|EX570579693261685.4globlastp
3433LAB268pine|10v1|BX250390693361685.4globlastp
3434LAB268barley|10v1|BF625158693461685.4globlastp
3435LAB268poplar|10v1|CV225507693561685.4globlastp
3436LAB268spruce|gb162|CO224810693361685.4globlastp
3437LAB268oat|10v1|GO586850693661685.2globlastp
3438LAB268oat|10v1|GO587649693761685.2globlastp
3439LAB268oat|10v1|GR328829693861685.2globlastp
3440LAB268b_oleracea|gb161|ES944086693961685.1globlastp
3441LAB268b_rapa|gb162|CA991789694061685.1globlastp
3442LAB268b_rapa|gb162|CX265826694061685.1globlastp
3443LAB268cotton|gb164|AI728766694161685.1globlastp
3444LAB268cotton|gb164|BG443736694261685.1globlastp
3445LAB268dandelion|gb161|DY836046694361685.1globlastp
3446LAB268dandelion|gb161|DY837761694461685.1globlastp
3447LAB268ginger|gb164|DY358309694561685.1globlastp
3448LAB268lettuce|gb157.2|DW072522694661685.1globlastp
3449LAB268lettuce|gb157.2|DW105156694761685.1globlastp
3450LAB268lettuce|gb157.2|DW106760694861685.1globlastp
3451LAB268lettuce|gb157.2|DW170641694961685.1globlastp
3452LAB268oil_palm|gb166|EL681602695061685.1globlastp
3453LAB268radish|gb164|EX904649695161685.1globlastp
3454LAB268radish|gb164|FD936397695261685.1globlastp
3455LAB268wheat|gb164|BE417597695361685.1globlastp
3456LAB268wheat|gb164|BE417802695461685.1globlastp
3457LAB268wheat|gb164|BE422967695561685.1globlastp
3458LAB268wheat|gb164|BF483140695661685.1globlastp
3459LAB268wheat|gb164|CA598185695761685.1globlastp
3460LAB268wheat|gb164|CA707571695861685.1globlastp
3461LAB268nicotiana_benthamiana|gb162|CN743932695961685globlastp
3462LAB268spruce|gb162|CO233199696061685globlastp
3463LAB268tomato|gb164|BG123365696161685globlastp
3464LAB268kiwi|gb166|FG502449696261684.9globlastp
3465LAB268sunflower|gb162|EE658389696461684.7globlastp
3466LAB268maize|gb170|LLAI855380696561684.68glotblastn
3467LAB268oat|gb164|CN814783696661684.6globlastp
3468LAB268spruce|gb162|CK434637696761684.6globlastp
3469LAB268gerbera|09v1|AJ753690696861684.5globlastp
3470LAB268oat|10v1|GO586105696961684.5globlastp
3471LAB268tragopogon|10v1|SRR020205S0080113697061684.5globlastp
3472LAB268b_juncea|gb164|EVGN01238609041063697161684.5globlastp
3473LAB268canola|gb161|EE568160697261684.5globlastp
3474LAB268cotton|gb164|CD486193697361684.5globlastp
3475LAB268cycas|gb166|EX921626697461684.5globlastp
3476LAB268spruce|gb162|DR572882697561684.5globlastp
3477LAB268wheat|gb164|CV065522697661684.5globlastp
3478LAB268ipomoea_nil|10v1|BJ573681697761684.47glotblastn
3479LAB268sugarcane|10v1|CA243313697861684.47glotblastn
3480LAB268barley|gb157SOLEXA|BF623064697961684.47glotblastn
3481LAB268maize|gb170|LLFL225872698061684.47glotblastn
3482LAB268maize|gb170|LLFL375355698161684.47glotblastn
3483LAB268maize|gb170|LLFL398411698261684.47glotblastn
3484LAB268sunflower|gb162|CD853795698361684.47glotblastn
3485LAB268sunflower|gb162|DY929104698461684.47glotblastn
3486LAB268wheat|gb164|CA627121698561684.47glotblastn
3487LAB268cotton|gb164|DT458957698661684.4globlastp
3488LAB268cryptomeria|gb166|BY890130698761684.4globlastp
3489LAB268fescue|gb161|DT685912698861684.4globlastp
3490LAB268fescue|gb161|DT685921698961684.4globlastp
3491LAB268fescue|gb161|DT689498699061684.4globlastp
3492LAB268lettuce|gb157.2|DW044538699161684.4globlastp
3493LAB268lettuce|gb157.2|DW045694699261684.4globlastp
3494LAB268lettuce|gb157.2|DW112493699361684.4globlastp
3495LAB268lettuce|gb157.2|DW152364699461684.4globlastp
3496LAB268lotus|gb157.2|CB828182699561684.4globlastp
3497LAB268oil_palm|gb166|EL681389699661684.4globlastp
3498LAB268rye|gb164|BE495825699761684.4globlastp
3499LAB268triphysaria|gb164|CB815232699861684.4globlastp
3500LAB268wheat|gb164|BE399101699961684.4globlastp
3501LAB268wheat|gb164|BE400757700061684.4globlastp
3502LAB268wheat|gb164|BE401940700161684.4globlastp
3503LAB268wheat|gb164|BE415991700261684.4globlastp
3504LAB268wheat|gb164|BE416205700361684.4globlastp
3505LAB268wheat|gb164|BE427056700461684.4globlastp
3506LAB268wheat|gb164|BE443644700561684.4globlastp
3507LAB268wheat|gb164|BE498264700661684.4globlastp
3508LAB268wheat|gb164|BE606944700761684.4globlastp
3509LAB268wheat|gb164|BQ752653700861684.4globlastp
3510LAB268wheat|gb164|CA622310700961684.4globlastp
3511LAB268wheat|gb164|CA701185701061684.4globlastp
3512LAB268b_oleracea|gb161|EE531495701161684.3globlastp
3513LAB268nicotiana_benthamiana|gb162|ES885671701261684.3globlastp
3514LAB268spruce|gb162|DV974261701361684.3globlastp
3515LAB268spruce|gb162|EX317959701461684.3globlastp
3516LAB268spruce|gb162|EX384965701561684.3globlastp
3517LAB268maize|gb170|LLFL417329701661684.1globlastp
3518LAB268monkeyflower|10v1|DV209491701761683.9globlastp
3519LAB268safflower|gb162|EL398759701861683.8globlastp
3520LAB268b_juncea|gb164|EVGN00020808423390701961683.7globlastp
3521LAB268b_juncea|gb164|EVGN00450511902650702061683.7globlastp
3522LAB268b_rapa|gb162|CV432749702161683.7globlastp
3523LAB268b_rapa|gb162|CX272811702261683.7globlastp
3524LAB268cotton|gb164|BE053285702361683.7globlastp
3525LAB268cotton|gb164|BE053467702461683.7globlastp
3526LAB268cotton|gb164|DT458659702561683.7globlastp
3527LAB268cowpea|gb166|FC457316702661683.7globlastp
3528LAB268fescue|gb161|DT707337702761683.7globlastp
3529LAB268ginger|gb164|DY358075702861683.7globlastp
3530LAB268ipomoea|gb157.2|CJ744369702961683.7globlastp
3531LAB268lettuce|gb157.2|DW148044703161683.7globlastp
3532LAB268radish|gb164|EV539475703261683.7globlastp
3533LAB268radish|gb164|EX904372703361683.7globlastp
3534LAB268sunflower|gb162|CD848280703461683.7globlastp
3535LAB268sunflower|gb162|CD849983703561683.7globlastp
3536LAB268wheat|gb164|BE422475703661683.7globlastp
3537LAB268wheat|gb164|BE423456703761683.7globlastp
3538LAB268wheat|gb164|BE423794703861683.7globlastp
3539LAB268wheat|gb164|BE444787703961683.7globlastp
3540LAB268wheat|gb164|BQ240605704061683.7globlastp
3541LAB268wheat|gb164|BQ484067704161683.7globlastp
3542LAB268wheat|gb164|CA633516704261683.7globlastp
3543LAB268wheat|gb164|CA726043704361683.7globlastp
3544LAB268wheat|gb164|DR737070704461683.7globlastp
3545LAB268melon|gb165|AM719080704561683.6globlastp
3546LAB268radish|gb164|EV547372704661683.6globlastp
3547LAB268radish|gb164|EV567871704761683.6globlastp
3548LAB268pea|09v1|EX568838704861683.5globlastp
3549LAB268pea|09v1|EX570248704861683.5globlastp
3550LAB268pea|09v1|EX570251704861683.5globlastp
3551LAB268pea|09v1|EX571338704961683.5glotblastn
3552LAB268sugarcane|10v1|CA077203705061683.5glotblastn
3553LAB268artemisia|gb164|EY039119705161683.5globlastp
3554LAB268artemisia|gb164|EY063572705261683.5glotblastn
3555LAB268barley|gb157SOLEXA|BQ754387705361683.5glotblastn
3556LAB268canola|gb161|EE545425705461683.5glotblastn
3557LAB268maize|gb170|LLFL026684705561683.5globlastp
3558LAB268spruce|gb162|EX403699705661683.5globlastp
3559LAB268spruce|gb162|EX423558705761683.5globlastp
3560LAB268sunflower|gb162|CF077380705861683.5glotblastn
3561LAB268citrus|gb166|EY74387661683.5glotblastn
3562LAB268canola|gb161|CD812364705961683.1globlastp
3563LAB268cotton|gb164|DT456196706061683.1globlastp
3564LAB268cryptomeria|gb166|BY884124706161683.1globlastp
3565LAB268fescue|gb161|DT685782706261683.1globlastp
3566LAB268fescue|gb161|DT686722706361683.1globlastp
3567LAB268ginger|gb164|DY347124706461683.1globlastp
3568LAB268ipomoea|gb157.2|CB330659706561683.1globlastp
3569LAB268lettuce|gb157.2|DW104257706661683.1globlastp
3570LAB268lettuce|gb157.2|DW112662706761683.1globlastp
3571LAB268radish|gb164|EV569789706861683.1globlastp
3572LAB268strawberry|gb164|CO817361706961683.1globlastp
3573LAB268triphysaria|gb164|EY020033707061683.1globlastp
3574LAB268wheat|gb164|BE416319707161683.1globlastp
3575LAB268wheat|gb164|BE416450707261683.1globlastp
3576LAB268wheat|gb164|BE499046707361683.1globlastp
3577LAB268wheat|gb164|BF200454707461683.1globlastp
3578LAB268wheat|gb164|BF484135707561683.1globlastp
3579LAB268wheat|gb164|BU101226707661683.1globlastp
3580LAB268wheat|gb164|CA597413707761683.1globlastp
3581LAB268wheat|gb164|CA610380707861683.1globlastp
3582LAB268wheat|gb164|CA616899707961683.1globlastp
3583LAB268wheat|gb164|CA639849708061683.1globlastp
3584LAB268cotton|gb164|CD486080708161683globlastp
3585LAB268sunflower|gb162|CD848926708261683globlastp
3586LAB268lettuce|gb157.2|DW120600708361682.9globlastp
3587LAB268radish|gb164|FD966520708461682.9globlastp
3588LAB268spikemoss|gb165|FE448582708561682.9globlastp
3589LAB268spruce|gb162|EX400483708661682.8globlastp
3590LAB268triphysaria|gb164|EX998942708761682.8globlastp
3591LAB268wheat|gb164|CA622100708861682.69glotblastn
3592LAB268apple|gb171|CN578733708961682.52glotblastn
3593LAB268cotton|gb164|ES837982709061682.52glotblastn
3594LAB268maize|gb170|LLFL008979709161682.52glotblastn
3595LAB268sugarcane|10v1|CA234599XX2709261682.52glotblastn
3596LAB268lolium|10v1|SRR029314S0011890709361682.5globlastp
3597LAB268orobanche|10v1|SRR023495S0014175709461682.5globlastp
3598LAB268triphysaria|10v1|SRR023500S0019032709461682.5globlastp
3599LAB268b_rapa|gb162|CA991835709561682.5globlastp
3600LAB268cichorium|gb171|EH703474709661682.5globlastp
3601LAB268tea|10v1|GE652467709761682.5globlastp
3602LAB268tea|gb171|GE652467709761682.5globlastp
3603LAB268oat|10v1|GO586588709861682.4globlastp
3604LAB268oat|10v1|GO586968709961682.4globlastp
3605LAB268arabidopsis|gb165|AT5G59970710061682.4globlastp
3606LAB268beet|gb162|BI096197710161682.4globlastp
3607LAB268canola|gb161|CD817261710261682.4globlastp
3608LAB268fescue|gb161|DT686588710361682.4globlastp
3609LAB268fescue|gb161|DT687391710461682.4globlastp
3610LAB268ipomoea|gb157.2|CJ738107710561682.4globlastp
3611LAB268lettuce|gb157.2|DW075639710661682.4globlastp
3612LAB268lettuce|gb157.2|DW147673710761682.4globlastp
3613LAB268lotus|gb157.2|AW163944710861682.4globlastp
3614LAB268radish|gb164|EV549130710961682.4globlastp
3615LAB268radish|gb164|EX746739711061682.4globlastp
3616LAB268rose|gb157.2|EC586164711161682.4globlastp
3617LAB268rye|gb164|BE704504711261682.4globlastp
3618LAB268strawberry|gb164|DY670022711361682.4globlastp
3619LAB268wheat|gb164|BE399555711461682.4globlastp
3620LAB268wheat|gb164|BE399932711561682.4globlastp
3621LAB268wheat|gb164|BE415110711661682.4globlastp
3622LAB268wheat|gb164|BE416325711761682.4globlastp
3623LAB268wheat|gb164|BE423864711861682.4globlastp
3624LAB268wheat|gb164|BE424898711961682.4globlastp
3625LAB268wheat|gb164|BE425234712061682.4globlastp
3626LAB268wheat|gb164|BG263850712161682.4globlastp
3627LAB268wheat|gb164|BG275092712261682.4globlastp
3628LAB268wheat|gb164|CD869572712361682.4globlastp
3629LAB268cassava|gb164|BM260125712461682.3globlastp
3630LAB268radish|gb164|FD538823712561682.3globlastp
3631LAB268spruce|gb162|CO223362712661682.3globlastp
3632LAB268spruce|gb162|DR570941712761682.3globlastp
3633LAB268spruce|gb162|EX323253712861682.3globlastp
3634LAB268triphysaria|gb164|EX991298712961682.3globlastp
3635LAB268wheat|gb164|CK154925713061681.8globlastp
3636LAB268barley|gb157SOLEXA|BG344395713161681.73glotblastn
3637LAB268b_juncea|gb164|EVGN00141408432756713261681.7globlastp
3638LAB268b_rapa|gb162|L33665713361681.7globlastp
3639LAB268beet|gb162|EG551265713461681.7globlastp
3640LAB268canola|gb161|CD812509713561681.7globlastp
3641LAB268lettuce|gb157.2|DW054329713661681.7globlastp
3642LAB268lettuce|gb157.2|DW158082713761681.7globlastp
3643LAB268radish|gb164|EY903059713861681.7globlastp
3644LAB268wheat|gb164|AL820085713961681.7globlastp
3645LAB268wheat|gb164|BE398313714061681.7globlastp
3646LAB268wheat|gb164|BE415832714161681.7globlastp
3647LAB268wheat|gb164|BE415870714261681.7globlastp
3648LAB268wheat|gb164|BE416751714361681.7globlastp
3649LAB268wheat|gb164|BE417145714461681.7globlastp
3650LAB268wheat|gb164|BE423800714561681.7globlastp
3651LAB268wheat|gb164|BE425155714661681.7globlastp
3652LAB268wheat|gb164|CA605518714761681.7globlastp
3653LAB268maize|gb170|LLFL325425714861681.6globlastp
3654LAB268oil_palm|gb166|EL683840714961681.6globlastp
3655LAB268spruce|gb162|ES665243715061681.6globlastp
3656LAB268barley|gb157SOLEXA|BM444527715161681.55glotblastn
3657LAB268maize|gb170|LLCD447518715261681.55glotblastn
3658LAB268sugarcane|gb157.3|CA107504715361681.55glotblastn
3659LAB268sugarcane|gb157.3|CA108717715461681.55glotblastn
3660LAB268jatropha|09v1|FM88843561681.55glotblastn
3661LAB268triphysaria|gb164|EY01208361681.55glotblastn
3662LAB268fescue|gb161|DT687241715561681.5globlastp
3663LAB268radish|gb164|FD580482715661681.5globlastp
3664LAB268citrus|gb166|EY825373715761681.1globlastp
3665LAB268fescue|gb161|DT687220715861681.1globlastp
3666LAB268fescue|gb161|DT688818715961681.1globlastp
3667LAB268ipomoea|gb157.2|CB330950716061681.1globlastp
3668LAB268lettuce|gb157.2|DW049144716161681.1globlastp
3669LAB268rose|gb157.2|EC587324716261681.1globlastp
3670LAB268wheat|gb164|BE399369716361681.1globlastp
3671LAB268wheat|gb164|BE416516716461681.1globlastp
3672LAB268wheat|gb164|BF474715716561681.1globlastp
3673LAB268wheat|gb164|BM135522716661681.1globlastp
3674LAB268wheat|gb164|BQ608801716761681.1globlastp
3675LAB268wheat|gb164|CA593029716861681.1globlastp
3676LAB268wheat|gb164|CA609335716961681.1globlastp
3677LAB268pine|gb157.2|DR056167717061681globlastp
3678LAB268rye|gb164|BE493942717161681globlastp
3679LAB268soybean|gb168|BM139774717261681globlastp
3680LAB268wheat|gb164|CA692550717361681globlastp
3681LAB268wheat|gb164|CA708235717461681globlastp
3682LAB268fescue|gb161|DT675092717561680.8globlastp
3683LAB268potato|gb157.2|CV475517717661680.8globlastp
3684LAB268spruce|gb162|DR481843717761680.8globlastp
3685LAB268sugarcane|gb157.3|CA198373717861680.8globlastp
3686LAB268pea|09v1|FG532461717961680.6globlastp
3687LAB268barley|gb157SOLEXA|BF627774718061680.6globlastp
3688LAB268rose|gb157.2|EC587236718161680.6globlastp
3689LAB268wheat|gb164|CJ509634718261680.6globlastp
3690LAB268sesame|10v1|BU667852718361680.58glotblastn
3690LAB268sesame|gb157.2|BU667852718461680.58glotblastn
3691LAB268wheat|gb164|DR737618718561680.58glotblastn
3692LAB268artemisia|10v1|SRR019551S008570061680.58glotblastn
3693LAB268b_rapa|gb162|EE523641718661680.5globlastp
3694LAB268cotton|gb164|BF269451718761680.5globlastp
3695LAB268fescue|gb161|DT687024718861680.5globlastp
3696LAB268fescue|gb161|DT687419718961680.5globlastp
3697LAB268fescue|gb161|DT702542719061680.5globlastp
3698LAB268iceplant|gb164|BE033998719161680.5globlastp
3699LAB268wheat|gb164|BE404764719261680.5globlastp
3700LAB268wheat|gb164|CA484177719361680.5globlastp
3701LAB268beet|gb162|BE590319719461680globlastp
3702LAB269sugarcane|gb157.3|CA073377719561796.2globlastp
3703LAB269sugarcane|gb157.3|CA073918719661796.2globlastp
3704LAB269sugarcane|gb157.3|CA116132719561796.2globlastp
3705LAB269sorghum|09v1|SB01G000950719761795globlastp
3706LAB269sorghum|gb161.crp|BF585848719761795globlastp
3707LAB269sugarcane|gb157.3|CA073796719761795globlastp
3708LAB269sugarcane|gb157.3|CA079491719761795globlastp
3709LAB269sugarcane|gb157.3|CA090885719761795globlastp
3710LAB269sugarcane|gb157.3|CA242409719861793.1globlastp
3711LAB269cenchrus|gb166|EB669873719961792.5globlastp
3712LAB269sugarcane|gb157.3|BU102855720061792.5globlastp
3713LAB269sugarcane|gb157.3|CA085423720061792.5globlastp
3714LAB269sugarcane|gb157.3|CA114248720061792.5globlastp
3715LAB269sugarcane|10v1|CA073377720161792.45glotblastn
3716LAB269sugarcane|gb157.3|CA071501720261791.9globlastp
3717LAB269sugarcane|10v1|CA073796720361791.82glotblastn
3718LAB269sugarcane|10v1|CA088321720461791.82glotblastn
3719LAB269cotton|gb164|DT556619720561791.2globlastp
3720LAB269maize|gb170|AA661456720661791.2globlastp
3721LAB269maize|gb170|AI395882720561791.2globlastp
3722LAB269sorghum|09v1|SB02G030950720761791.2globlastp
3723LAB269sorghum|gb161.crp|AI657275720761791.2globlastp
3724LAB269sugarcane|gb157.3|CA079328720861791.19glotblastn
3725LAB269sorghum|09v1|SB01G039250720961790.6globlastp
3726LAB269sorghum|gb161.crp|AI396033720961790.6globlastp
3727LAB269sugarcane|gb157.3|CA066505721061790.6globlastp
3728LAB269sugarcane|gb157.3|CA071525721161790.6globlastp
3729LAB269maize|gb170|LLFL026072721261790glotblastn
3730LAB269sugarcane|gb157.3|CA073176721361790globlastp
3731LAB269sugarcane|10v1|CA071525721461789.94glotblastn
3732LAB269sugarcane|gb157.3|CA114685721561789.94glotblastn
3733LAB269rice|gb170|OS01G31800721661789.4globlastp
3734LAB269rice|gb170|OS03G17100721661789.4globlastp
3735LAB269switchgrass|gb167|FE601150721761789.4globlastp
3736LAB269switchgrass|gb167|FL727559721861789.4globlastp
3737LAB269maize|gb170|LLEG052954721961789.38glotblastn
3738LAB269sugarcane|10v1|BU102855722061789.31glotblastn
3739LAB269sugarcane|10v1|CA071501722161789.31glotblastn
3740LAB269sugarcane|gb157.3|CA077796722261789.31glotblastn
3741LAB269sorghum|09v1|SB01G039240722361788.8globlastp
3742LAB269sorghum|gb161.crp|AI444702722361788.8globlastp
3743LAB269switchgrass|gb167|FE614567722461788.8globlastp
3744LAB269sugarcane|gb157.3|CA116578722561788.75glotblastn
3745LAB269sugarcane|10v1|CA072812722661788.68glotblastn
3746LAB269maize|gb170|LLCF059749722761788.68glotblastn
3747LAB269cenchrus|gb166|EB652626722861788.1globlastp
3748LAB269maize|gb170|AI395995722961788.1globlastp
3749LAB269maize|gb170|LLDR828188723061788.1globlastp
3750LAB269maize|gb170|ZMU08225723061788.1globlastp
3751LAB269switchgrass|gb167|FE599840723161788.1globlastp
3752LAB269sugarcane|gb157.3|CA123898723261788.05glotblastn
3753LAB269sugarcane|gb157.3|CA239448723361788.05glotblastn
3754LAB269millet|09v1|CD724737723461787.5glotblastn
3755LAB269maize|gb170|AI396033723561787.5globlastp
3756LAB269switchgrass|gb167|DN151599723661787.5globlastp
3757LAB269oat|10v1|GO586241723761787.4globlastp
3758LAB269sugarcane|gb157.3|CA087750723861787globlastp
3759LAB269sugarcane|gb157.3|CA118440723961787globlastp
3760LAB269gerbera|09v1|AJ752939724061786.8globlastp
3761LAB269oat|10v1|CN814889724161786.8globlastp
3762LAB269sugarcane|gb157.3|CA123779724261786.79glotblastn
3763LAB269sugarcane|gb157.3|CA101458724361786.7globlastp
3764LAB269beet|gb162|BQ588291724461786.2globlastp
3765LAB269fescue|gb161|DT689657724561786.2globlastp
3766LAB269sugarcane|gb157.3|CA124793724661786.2globlastp
3767LAB269brachypodium|09v1|DV488718724761785.7globlastp
3768LAB269brachypodium|gb169|BE401791724761785.7globlastp
3769LAB269brachypodium|gb169|BI960263724861785.6globlastp
3770LAB269sugarcane|gb157.3|CA129121724961785.53glotblastn
3771LAB269switchgrass|gb167|DN140680725061785.5globlastp
3772LAB269switchgrass|gb167|DN141778725061785.5globlastp
3773LAB269switchgrass|gb167|FE633841725061785.5globlastp
3774LAB269switchgrass|gb167|FL736645725061785.5globlastp
3775LAB269sorghum|09v1|SB09G001520725161785.2globlastp
3776LAB269sorghum|gb161.crp|AW287442725161785.2globlastp
3777LAB269sugarcane|gb157.3|CA080385725261785.1globlastp
3778LAB269sugarcane|gb157.3|CA100971725361785.1globlastp
3779LAB269sugarcane|gb157.3|CA103471725361785.1globlastp
3780LAB269maize|gb170|T18401725461785globlastp
3781LAB269oat|10v1|GR358067725561784.9globlastp
3782LAB269barley|10v1|BQ460682725661784.9globlastp
3783LAB269barley|gb157SOLEXA|BQ460682725661784.9globlastp
3784LAB269cassava|09v1|BM259730725761784.9globlastp
3785LAB269cassava|gb164|BM259730725761784.9globlastp
3786LAB269liriodendron|gb166|DT579867725861784.9globlastp
3787LAB269maize|gb170|LLFK966020725961784.9globlastp
3788LAB269prunus|gb167|DY646167726061784.9globlastp
3789LAB269lotus|09v1|BG661990726161784.4globlastp
3790LAB269lotus|gb157.2|BG661990726161784.4globlastp
3791LAB269oil_palm|gb166|EL681634726261784.4globlastp
3792LAB269gerbera|09v1|AJ753301726361784.3globlastp
3793LAB269citrus|gb166|BQ624783726461784.3globlastp
3794LAB269cowpea|gb166|FC456663726561784.3globlastp
3795LAB269cowpea|gb166|FC456998726661784.3globlastp
3796LAB269medicago|09v1|BF643805726761784.3globlastp
3797LAB269soybean|gb168|CA898616726861784.3globlastp
3798LAB269artemisia|10v1|EY031915726961784.28glotblastn
3799LAB269artemisia|10v1|EY075725726961784.28glotblastn
3800LAB269artemisia|10v1|GW328612726961784.28glotblastn
3801LAB269artemisia|10v1|GW329305726961784.28glotblastn
3802LAB269artemisia|10v1|SRR019254S0011741726961784.28glotblastn
3803LAB269artemisia|10v1|SRR019254S0001774726961784.28glotblastn
3804LAB269artemisia|gb164|EY031915726961784.28glotblastn
3805LAB269artemisia|10v1|SRR019254S0002410726961784.28glotblastn
3806LAB269artemisia|gb164|EY055445726961784.28glotblastn
3807LAB269lotus|09v1|BI418493727061784globlastp
3808LAB269lotus|gb157.2|BI418493727061784globlastp
3809LAB269maize|gb170|BM259143727161784globlastp
3810LAB269sugarcane|gb157.3|CA071927727261784globlastp
3811LAB269sugarcane|gb157.3|CA118816727261784globlastp
3812LAB269spurge|gb161|AF242311727361783.95glotblastn
3813LAB269castorbean|gb160|EE259198727461783.8globlastp
3814LAB269castorbean|09v1|EE259198727461783.8globlastp
3815LAB269cynara|gb167|GE588632727561783.8globlastp
3816LAB269maize|gb170|LLAI666147727661783.8globlastp
3817LAB269onion|gb162|BI095529727761783.75glotblastn
3818LAB269sugarcane|gb157.3|CA113890727861783.7globlastp
3819LAB269cichorium|gb171|EH704900727961783.65glotblastn
3820LAB269gerbera|09v1|AJ756141728061783.6globlastp
3821LAB269apple|gb171|CN579547728161783.6globlastp
3822LAB269apple|gb171|CN861500728261783.6globlastp
3823LAB269beet|gb162|BI543765728361783.6globlastp
3824LAB269cassava|09v1|BM259833728461783.6globlastp
3825LAB269cassava|gb164|BM259833728461783.6globlastp
3826LAB269chestnut|gb170|SRR006295S0009247728561783.6globlastp
3827LAB269cotton|gb164|BE052224728661783.6globlastp
3828LAB269cotton|gb164|BE055384728661783.6globlastp
3829LAB269cotton|gb164|CO110571728761783.6globlastp
3830LAB269cotton|gb164|DT048656728661783.6globlastp
3831LAB269oak|gb170|DN950260728561783.6globlastp
3832LAB269poppy|gb166|FG607964728861783.6globlastp
3833LAB269soybean|gb168|BE660063728961783.6globlastp
3834LAB269soybean|gb168|BI273631729061783.6globlastp
3835LAB269spurge|gb161|AW874994729161783.6globlastp
3836LAB269wheat|gb164|BQ802458729261783.6globlastp
3837LAB269strawberry|gb164|DY674860729361783.3globlastp
3838LAB269cenchrus|gb166|EB656997729461783.2globlastp
3839LAB269maize|gb170|LLEB406213729561783.12glotblastn
3840LAB269artemisia|10v1|SRR019254S0013055729661783.1globlastp
3841LAB269tea|10v1|CV013635729761783.1globlastp
3842LAB269castorbean|gb160|MDL29154M000210729861783.1globlastp
3843LAB269castorbean|09v1|EV520334729861783.1globlastp
3844LAB269ginger|gb164|DY353641729961783.1globlastp
3845LAB269medicago|gb157.2|BF643805730061783.1globlastp
3846LAB269sugarcane|gb157.3|CA120528730161783.1globlastp
3847LAB269tea|gb171|CV013635729761783.1globlastp
3848LAB269bean|gb167|CA898614730261783.02glotblastn
3849LAB269iceplant|gb164|BE130702730361783.02glotblastn
3850LAB269wheat|gb164|AL826759730461783.02glotblastn
3851LAB269flax|09v1|EU830866730561783globlastp
3852LAB269orobanche|10v1|SRR023189S0002180730661783globlastp
3853LAB269cowpea|gb166|FF397354730761783globlastp
3854LAB269liquorice|gb171|FS254761730861783globlastp
3855LAB269lotus|09v1|LLAW719911730961783globlastp
3856LAB269lotus|gb157.2|AW719911730961783globlastp
3857LAB269pseudoroegneria|gb167|FF340751731061783globlastp
3858LAB269soybean|gb168|AL377356731161783globlastp
3859LAB269soybean|gb168|AW348342731261783globlastp
3860LAB269rice|gb170|OS05G02300731361782.7globlastp
3861LAB269sugarcane|10v1|CA080385731461782.61glotblastn
3862LAB269eschscholzia|10v1|CD480726731561782.6globlastp
3863LAB269centaurea|gb166|EL932239731661782.6globlastp
3864LAB269lettuce|10v1|CV700185731761782.6globlastp
3865LAB269lettuce|gb157.2|CV700185731761782.6globlastp
3866LAB269lettuce|10v1|DW043988731761782.6globlastp
3867LAB269lettuce|gb157.2|DW043988731761782.6globlastp
3868LAB269lettuce|10v1|DW145083731761782.6globlastp
3869LAB269lettuce|gb157.2|DW145083731761782.6globlastp
3870LAB269coffea|10v1|DV673276731861782.5globlastp
3871LAB269eggplant|10v1|FS017038731961782.5globlastp
3872LAB269ginseng|10v1|DV554362732061782.5globlastp
3873LAB269avocado|10v1|CV004562732161782.5globlastp
3874LAB269avocado|gb164|CV004562732161782.5globlastp
3875LAB269brachypodium|gb169|BE398477732261782.5globlastp
3876LAB269brachypodium|09v1|DV475962732361782.5globlastp
3877LAB269brachypodium|gb169|BE400244732361782.5globlastp
3878LAB269cotton|gb164|BF275621732461782.5globlastp
3879LAB269cotton|gb164|DR461180732461782.5globlastp
3880LAB269kiwi|gb166|FG404103732561782.5globlastp
3881LAB269kiwi|gb166|FG410690732661782.5globlastp
3882LAB269medicago|09v1|BE239402732761782.5globlastp
3883LAB269medicago|gb157.2|BE239402732761782.5globlastp
3884LAB269sunflower|gb162|CD850054732861782.5globlastp
3885LAB269tea|10v1|FE861646732961782.5globlastp
3886LAB269tea|gb171|FE861646732961782.5globlastp
3887LAB269artemisia|10v1|GW329229733061782.4globlastp
3888LAB269jatropha|09v1|GT228525733161782.4globlastp
3889LAB269orobanche|10v1|SRR023189S0007626733261782.4globlastp
3890LAB269grape|gb160|CF209226733361782.4globlastp
3891LAB269antirrhinum|gb166|AJ568652733461782.4globlastp
3892LAB269barley|gb157SOLEXA|BQ470520733561782.4globlastp
3893LAB269bruguiera|gb166|BP941111733661782.4globlastp
3894LAB269cassava|09v1|FF534531733761782.4globlastp
3895LAB269clover|gb162|BB902942733861782.4globlastp
3896LAB269papaya|gb165|EX255877733961782.4globlastp
3897LAB269peanut|gb171|CD038080734061782.4globlastp
3898LAB269peanut|gb171|CX018047734161782.4globlastp
3899LAB269peanut|gb171|EE124672734261782.4globlastp
3900LAB269poplar|10v1|AI162505734361782.4globlastp
3901LAB269poplar|gb170|AI162505734361782.4globlastp
3902LAB269tea|10v1|CV014555734461782.4globlastp
3903LAB269tea|gb171|CV014555734461782.4globlastp
3904LAB269tragopogon|10v1|SRR020205S0003365734561782.39glotblastn
3905LAB269cacao|gb167|EH057782734661782.39glotblastn
3906LAB269canola|10v1|EG020378734761782.39glotblastn
3907LAB269canola|gb161|EG020378734861782.39glotblastn
3908LAB269rye|gb164|BE704593734961782.39glotblastn
3909LAB269artemisia|10v1|SRR019254S001193961782.39glotblastn
3910LAB269cichorium|gb171|EH69845561782.39glotblastn
3911LAB269cucumber|09v1|CK085829735061782.1globlastp
3912LAB269barley|10v1|BF621287735161782.1globlastp
3913LAB269barley|gb157SOLEXA|AL508027735161782.1globlastp
3914LAB269melon|gb165|DV633078735061782.1globlastp
3915LAB269sugarcane|gb157.3|CA246050735261782.1glotblastn
3916LAB269wheat|gb164|BE415790735361782.1globlastp
3917LAB269lettuce|10v1|DW074552735461782globlastp
3918LAB269brachypodium|09v1|SRR031795S0043037735561782globlastp
3919LAB269lettuce|gb157.2|DW074552735461782globlastp
3920LAB269onion|gb162|CF445361735661782globlastp
3921LAB269sunflower|gb162|CF077703735761782globlastp
3922LAB269sugarcane|10v1|BQ529676735861781.99glotblastn
3923LAB269sugarcane|gb157.3|BQ529676735861781.99glotblastn
3924LAB269eggplant|10v1|AB018242735961781.9globlastp
3925LAB269cynara|gb167|GE588059736061781.9globlastp
3926LAB269dandelion|gb161|DY816120736161781.9globlastp
3927LAB269ginger|gb164|DY366805736261781.9globlastp
3928LAB269maize|gb170|LLDV025110736361781.9globlastp
3929LAB269sunflower|gb162|CD848740736161781.9globlastp
3930LAB269sunflower|gb162|CD850823736161781.9globlastp
3931LAB269sunflower|gb162|EL460335736161781.9globlastp
3932LAB269lettuce|10v1|DW076202736461781.88glotblastn
3933LAB269nasturtium|10v1|SRR032558S0003969736561781.8globlastp
3934LAB269grape|gb160|CB340156736661781.8globlastp
3935LAB269barley|10v1|BQ470520736761781.8globlastp
3936LAB269medicago|09v1|AL384067736861781.8globlastp
3937LAB269medicago|gb157.2|AL384067736861781.8globlastp
3938LAB269nuphar|gb166|CD473263736961781.8globlastp
3939LAB269nuphar|gb166|CD474301737061781.8globlastp
3940LAB269nuphar|gb166|CD475325737161781.8globlastp
3941LAB269oil_palm|gb166|CN600853737261781.8globlastp
3942LAB269oil_palm|gb166|EL682266737361781.8globlastp
3943LAB269pseudoroegneria|gb167|FF342758737461781.8globlastp
3944LAB269sesame|10v1|BU667747737561781.8globlastp
3945LAB269sesame|gb157.2|BU667747737561781.8globlastp
3946LAB269tamarix|gb166|CF199999737661781.8globlastp
3947LAB269walnuts|gb166|EL893578737761781.8globlastp
3948LAB269wheat|gb164|BF475107737861781.8globlastp
3949LAB269wheat|gb164|BM137700737961781.8globlastp
3950LAB269pea|09v1|PEAH2A738061781.76glotblastn
3951LAB269bean|gb167|CA898623738161781.76glotblastn
3952LAB269lettuce|gb157.2|DW046318738261781.76glotblastn
3953LAB269lettuce|gb157.2|DW104400738361781.76glotblastn
3954LAB269lettuce|gb157.2|DW105504738261781.76glotblastn
3955LAB269lettuce|gb157.2|DW148380738361781.76glotblastn
3956LAB269lettuce|gb157.2|DW153827738461781.76glotblastn
3957LAB269maize|gb170|LLBE345313738561781.76glotblastn
3958LAB269senecio|gb170|DY658597738661781.76glotblastn
3959LAB269lettuce|10v1|DW104400738361781.76glotblastn
3960LAB269brachypodium|09v1|SRR031797S0022709738761781.7globlastp
3961LAB269cotton|gb164|BE055408738861781.6globlastp
3962LAB269lettuce|gb157.2|DW123638738961781.6globlastp
3963LAB269avocado|10v1|CK753619739061781.5globlastp
3964LAB269avocado|gb164|CK753619739061781.5globlastp
3965LAB269barley|10v1|AJ473557739161781.5globlastp
3966LAB269barley|gb157SOLEXA|AJ473557739161781.5globlastp
3967LAB269cichorium|gb171|EH682187739261781.5globlastp
3968LAB269sugarcane|10v1|CA071927731461781.48glotblastn
3969LAB269dandelion|gb161|DY834183739361781.4globlastp
3970LAB269maize|gb170|LLFK947559739461781.25glotblastn
3971LAB269ginseng|10v1|DV555645739561781.2globlastp
3972LAB269orobanche|10v1|SRR023189S0008983739661781.2globlastp
3973LAB269tragopogon|10v1|SRR020205S0018059739761781.2globlastp
3974LAB269catharanthus|gb166|EG558535739861781.2globlastp
3975LAB269catharanthus|gb166|EG562453739961781.2globlastp
3976LAB269catharanthus|gb166|FD416131740061781.2globlastp
3977LAB269centaurea|gb166|EH753053740161781.2globlastp
3978LAB269ginger|gb164|DY377650740261781.2globlastp
3979LAB269kiwi|gb166|FG428941740361781.2globlastp
3980LAB269safflower|gb162|EL377394740461781.2globlastp
3981LAB269sunflower|gb162|CD849669740561781.2globlastp
3982LAB269artemisia|10v1|SRR019254S0001113740661781.13glotblastn
3983LAB269jatropha|09v1|GT229311740761781.13glotblastn
3984LAB269nasturtium|10v1|SRR032558S0000657740861781.13glotblastn
3985LAB269nasturtium|10v1|SRR032558S0008269740961781.13glotblastn
3986LAB269orobanche|10v1|SRR023189S0017978741061781.13glotblastn
3987LAB269pea|09v1|EX568943741161781.13glotblastn
3988LAB269dandelion|gb161|DY840384741261781.13glotblastn
3989LAB269lettuce|10v1|DW048053741361781.13glotblastn
3990LAB269lettuce|gb157.2|DW048053741361781.13glotblastn
3991LAB269lettuce|gb157.2|DW106082741461781.13glotblastn
3992LAB269lettuce|gb157.2|DW146506741461781.13glotblastn
3993LAB269nicotiana_benthamiana|gb162|CN655396741561781.13glotblastn
3994LAB269rye|gb164|BE586810741661781.13glotblastn
3995LAB269spurge|gb161|DV157416741761781.13glotblastn
3996LAB269sunflower|gb162|CD848219741861781.13glotblastn
3997LAB269barley|10v1|BE455608741961781.1globlastp
3998LAB269chickpea|09v2|GR401929742061781.1globlastp
3999LAB269cucumber|09v1|CK085962742161781.1globlastp
4000LAB269medicago|09v1|AL377356742261781.1globlastp
4001LAB269medicago|09v1|BF519200742361781.1globlastp
4002LAB269orobanche|10v1|SRR023189S0010876742461781.1globlastp
4003LAB269orobanche|10v1|SRR023189S0028654742561781.1globlastp
4004LAB269pea|09v1|EX569036742661781.1globlastp
4005LAB269barley|gb157SOLEXA|AL506299741961781.1globlastp
4006LAB269basilicum|10v1|DY323812742761781.1globlastp
4007LAB269basilicum|gb157.3|DY323812742761781.1globlastp
4008LAB269bean|gb167|CA898617742861781.1globlastp
4009LAB269cacao|gb167|EH057760742961781.1globlastp
4010LAB269cassava|gb164|DB935361743061781.1globlastp
4011LAB269cichorium|gb171|DT212229743161781.1globlastp
4012LAB269clover|gb162|BB937077743261781.1globlastp
4013LAB269kiwi|gb166|FG403789743361781.1globlastp
4014LAB269medicago|gb157.2|AW574007743461781.1globlastp
4015LAB269oak|gb170|CR627534743561781.1globlastp
4016LAB269peanut|gb171|CX128201743661781.1globlastp
4017LAB269tobacco|gb162|BQ843038743761781.1globlastp
4018LAB269triphysaria|10v1|BM356994743861781.1globlastp
4019LAB269triphysaria|10v1|DR173737743961781.1globlastp
4020LAB269triphysaria|gb164|EY137032743961781.1globlastp
4021LAB269wheat|gb164|BE498725744061781.1globlastp
4022LAB269wheat|gb164|CK202244744161781.1globlastp
4023LAB269heritiera|10v1|SRR005795S0031964744261781globlastp
4024LAB269barley|gb157SOLEXA|AL511284744361781globlastp
4025LAB269lettuce|gb157.2|DW046029744461781globlastp
4026LAB269barley|10v1|AW983233744361781globlastp
4027LAB269barley|gb157SOLEXA|AL506114744561780.98glotblastn
4028LAB269sugarcane|gb157.3|CA200286744661780.98glotblastn
4029LAB269cleome_gynandra|10v1|SRR015532S0022202744761780.75glotblastn
4030LAB269artemisia|10v1|EY082330744861780.7globlastp
4031LAB269artemisia|10v1|EY084850744861780.7globlastp
4032LAB269artemisia|10v1|SRR019254S0007700744861780.7globlastp
4033LAB269artemisia|10v1|SRR019254S0012643744861780.7globlastp
4034LAB269ipomoea_nil|10v1|BJ554819744961780.7globlastp
4035LAB269artemisia|10v1|EY039776744861780.7globlastp
4036LAB269artemisia|gb164|EY082330744861780.7globlastp
4037LAB269artemisia|gb164|EY084850744861780.7globlastp
4038LAB269ipomoea|gb157.2|BJ554819744961780.7globlastp
4039LAB269sunflower|gb162|CD855395745061780.7globlastp
4040LAB269orobanche|10v1|SRR023189S0001029745161780.62glotblastn
4041LAB269lettuce|gb157.2|DW076202745261780.62glotblastn
4042LAB269sorghum|09v1|SB09G022690745361780.61glotblastn
4043LAB269sorghum|gb161.crp|AW681166745361780.61glotblastn
4044LAB269cleome_spinosa|10v1|GR932674745461780.6globlastp
4045LAB269eggplant|10v1|FS000322745561780.6globlastp
4046LAB269ginseng|10v1|DV553422745661780.6globlastp
4047LAB269apple|gb171|CN494745745761780.6globlastp
4048LAB269apple|gb171|CN880302745861780.6globlastp
4049LAB269centaurea|gb166|EL930888745961780.6globlastp
4050LAB269centaurea|gb166|EL934894746061780.6globlastp
4051LAB269rose|10v1|BI978192746161780.6globlastp
4052LAB269rose|gb157.2|BI978192746161780.6globlastp
4053LAB269strawberry|gb164|EX664843746261780.6globlastp
4054LAB269sugarcane|gb157.3|CA112320746361780.6globlastp
4055LAB269sugarcane|gb157.3|CA193165746461780.6globlastp
4056LAB269tobacco|gb162|BP192536746561780.6globlastp
4057LAB269artemisia|10v1|SRR019254S0007762746661780.5glotblastn
4058LAB269medicago|09v1|AL376385746761780.5globlastp
4059LAB269monkeyflower|10v1|DV206744746861780.5globlastp
4060LAB269oat|10v1|GO586644746961780.5glotblastn
4061LAB269orobanche|10v1|SRR023189S0000458747061780.5glotblastn
4062LAB269orobanche|10v1|SRR023189S0014080747161780.5globlastp
4063LAB269pea|09v1|EX571168747261780.5glotblastn
4064LAB269pea|09v1|EX571270747361780.5globlastp
4065LAB269triphysaria|10v1|DR176290747461780.5globlastp
4066LAB269antirrhinum|gb166|AJ558758747561780.5glotblastn
4067LAB269antirrhinum|gb166|AJ568035747661780.5glotblastn
4068LAB269barley|gb157SOLEXA|BF625527747761780.5glotblastn
4069LAB269chestnut|gb170|SRR006295S0011437747861780.5globlastp
4070LAB269fescue|gb161|DT678950747961780.5glotblastn
4071LAB269fescue|gb161|DT685753748061780.5glotblastn
4072LAB269kiwi|gb166|FG403861748161780.5globlastp
4073LAB269lettuce|gb157.2|DW050465748261780.5glotblastn
4074LAB269lettuce|10v1|DW074637748361780.5glotblastn
4075LAB269lettuce|gb157.2|DW074637748461780.5glotblastn
4076LAB269lettuce|gb157.2|DW148769748561780.5glotblastn
4077LAB269liriodendron|gb166|CK748317748661780.5glotblastn
4078LAB269maize|gb170|LLDQ245995748761780.5glotblastn
4079LAB269medicago|gb157.2|AL376384748861780.5globlastp
4080LAB269nicotiana_benthamiana|gb162|CN741779748961780.5globlastp
4081LAB269petunia|gb171|CV300217749061780.5globlastp
4082LAB269poppy|gb166|FE967078749161780.5glotblastn
4083LAB269senecio|gb170|DY658035749261780.5globlastp
4084LAB269sugarcane|gb157.3|CA124689749361780.5globlastp
4085LAB269sugarcane|gb157.3|CA214343749461780.5glotblastn
4086LAB269sunflower|gb162|CD852070749561780.5globlastp
4087LAB269tobacco|gb162|DV158750749661780.5glotblastn
4088LAB269triphysaria|gb164|BM356994749761780.5globlastp
4089LAB269triphysaria|gb164|EY129294749861780.5globlastp
4090LAB269triphysaria|gb164|EY136702749961780.5glotblastn
4091LAB269barley|gb157SOLEXA|AL501872750061780.4globlastp
4092LAB269lettuce|gb157.2|DW080680750161780.4globlastp
4093LAB269maize|gb170|AI939777750261780.25glotblastn
4094LAB269triphysaria|gb164|BE574777750361780.25glotblastn
4095LAB269triphysaria|gb164|EX999662750461780.25glotblastn
4096LAB269artemisia|10v1|EY082130750561780.1globlastp
4097LAB269artemisia|10v1|GW328287750661780.1globlastp
4098LAB269artemisia|10v1|GW328462750761780.1globlastp
4099LAB269artemisia|10v1|SRR019254S0000360750861780.1globlastp
4100LAB269artemisia|10v1|SRR019254S0003074750861780.1globlastp
4101LAB269artemisia|10v1|SRR019254S0042995750861780.1globlastp
4102LAB269artemisia|10v1|SRR019254S0094458750661780.1globlastp
4103LAB269artemisia|10v1|SRR019254S0000494750861780.1globlastp
4104LAB269artemisia|gb164|EY082130750561780.1globlastp
4105LAB269rice|gb170|OS05G38640750961780.1globlastp
4106LAB269gerbera|09v1|AJ754996751061780globlastp
4107LAB269tea|10v1|CV013767751161780globlastp
4108LAB269cynara|gb167|GE592728751261780globlastp
4109LAB269radish|gb164|EW726668751361780glotblastn
4110LAB269safflower|gb162|EL403937751461780globlastp
4111LAB269sunflower|gb162|CD851052751561780globlastp
4112LAB269tea|gb171|CV013640751161780globlastp
4113LAB269tobacco|gb162|BP192693751661780globlastp
4114LAB269tobacco|gb162|CV018747751761780globlastp
4115LAB270maize|gb170|AI615043751861898.1globlastp
4116LAB270maize|gb170|AI586603751961897.2globlastp
4117LAB270rice|gb170|OS02G55410752061896.8globlastp
4118LAB270brachypodium|09v1|GT797969752161893.5globlastp
4119LAB270wheat|gb164|BE400172752261893.3globlastp
4120LAB270brachypodium|gb169|BE400172752361893.1globlastp
4121LAB270barley|10v1|AV914416752461892.9globlastp
4122LAB270barley|gb157SOLEXA|AL507066752561883.7globlastp
4123LAB271switchgrass|gb167|FE611169752661992.15glotblastn
4124LAB271switchgrass|gb167|FE600805752761991.1globlastp
4125LAB271pseudoroegneria|gb167|FF345930752861980.7globlastp
4126LAB271leymus|gb166|EG378703752961980.6globlastp
4127LAB272maize|gb170|AW067349753062094.9globlastp
4128LAB272rice|gb170|OS05G39310753162092.6globlastp
4129LAB272medicago|09v1|AW256724753262081globlastp
4130LAB272medicago|gb157.2|AW256724753262081globlastp
4131LAB272monkeyflower|10v1|CV517019753362080.6globlastp
4132LAB272soybean|gb168|AW126006753462080.4globlastp
4133LAB272cassava|09v1|CK643325753562080.3globlastp
4134LAB272apple|gb171|CK900562753662080.3globlastp
4135LAB272kiwi|gb166|FG403505753762080.1globlastp
4136LAB272soybean|gb168|AW256724753862080.1globlastp
4137LAB272tobacco|gb162|DW002823753962080.1globlastp
4138LAB272nasturtium|10v1|SRR032558S0007563754062080globlastp
4139LAB274sugarcane|gb157.3|CA066127754162194.7globlastp
4140LAB274switchgrass|gb167|FE605626754262184.7globlastp
4141LAB274brachypodium|09v1|DV477522754362182.91glotblastn
4142LAB274maize|gb170|CF013850754462182.6globlastp
4143LAB274leymus|gb166|EG388830754562182.2globlastp
4144LAB274pseudoroegneria|gb167|FF340314754662181.2globlastp
4145LAB274wheat|gb164|BE429931754762180.1globlastp
4146LAB275sugarcane|10v1|BQ535805754862295.7globlastp
4147LAB275sugarcane|gb157.3|BQ535805754962295.3globlastp
4148LAB275maize|gb170|AI586596755062293.1globlastp
4149LAB275maize|gb170|AW129871755162290.9globlastp
4150LAB275switchgrass|gb167|FE607687755262289.9globlastp
4151LAB276sorghum|09v1|SB02G003590755362381.03glotblastn
4152LAB276sorghum|gb161.crp|BE366228755362381.03glotblastn
4153LAB277sugarcane|10v1|CA074813755462480.51glotblastn
4154LAB278maize|gb170|AW054293755562591.3globlastp
4155LAB278switchgrass|gb167|FE626292755662584.75glotblastn
4156LAB278rice|gb170|OS10G32810755762582.3globlastp
4157LAB279sugarcane|10v1|CA120192755862693.2globlastp
4158LAB279sugarcane|gb157.3|CA120192755962692.6globlastp
4159LAB279maize|gb170|AW355902756062684.57glotblastn
4160LAB279maize|gb170|LLCO441794756162682.32glotblastn
4161LAB279switchgrass|gb167|FE649969756262682.3globlastp
4162LAB280maize|gb170|AW066651756362781.7globlastp
4163LAB280maize|gb170|AW289072756462781.5globlastp
4164LAB280switchgrass|gb167|FE607054756562780.8globlastp
4165LAB281sugarcane|gb157.3|BQ535213756662898.1globlastp
4166LAB281switchgrass|gb167|DN141686756762893.4globlastp
4167LAB281switchgrass|gb167|DN141006756862892.2globlastp
4168LAB281maize|gb170|AW499357756962891.8globlastp
4169LAB281rice|gb170|OS03G60080757062883.9globlastp
4170LAB281maize|gb170|AI668448757162881.3globlastp
4171LAB283sugarcane|gb157.3|CA075098757263099.5globlastp
4172LAB283sugarcane|10v1|BQ533910757263099.5globlastp
4173LAB283sugarcane|gb157.3|BQ533910757363098.4globlastp
4174LAB283switchgrass|gb167|FE653888757463098.4globlastp
4175LAB283switchgrass|gb167|FL789395757563098.4globlastp
4176LAB283rice|gb170|OS03G22180757663096.3globlastp
4177LAB283brachypodium|09v1|DV476934757763095.7globlastp
4178LAB283brachypodium|gb169|BE424014757763095.7globlastp
4179LAB283sorghum|09v1|SB02G042750757863095.7globlastp
4180LAB283sorghum|gb161.crp|BI096623757863095.7globlastp
4181LAB283maize|gb170|AI396532757963095.2globlastp
4182LAB283sugarcane|gb157.3|CA084838758063095.2globlastp
4183LAB283brachypodium|09v1|GT790399758163094.7globlastp
4184LAB283maize|gb170|LLEB160472758263094.7globlastp
4185LAB283sorghum|gb161.crp|AI491551758363094.7globlastp
4186LAB283switchgrass|gb167|FL770723758463094.7globlastp
4187LAB283wheat|gb164|CA594043758563094.7globlastp
4188LAB283maize|gb170|AA030700758663094.1globlastp
4189LAB283maize|gb170|AI629674758663094.1globlastp
4190LAB283pseudoroegneria|gb167|FF340152758763094.1globlastp
4191LAB283sorghum|09v1|SB09G004290758863094.1globlastp
4192LAB283sugarcane|gb157.3|BQ530487758863094.1globlastp
4193LAB283wheat|gb164|BE424014758963094.1globlastp
4194LAB283sugarcane|10v1|BQ530487758863094.1globlastp
4195LAB283rye|gb164|BE494252759063093.6globlastp
4196LAB283wheat|gb164|BE422875759163093.6globlastp
4197LAB283rice|gb170|OS05G06310759263093.1globlastp
4198LAB283sugarcane|gb157.3|CA080289759363093.1globlastp
4199LAB283sugarcane|gb157.3|CA094181759463093.1globlastp
4200LAB283wheat|gb164|BG606257759563093.05glotblastn
4201LAB283oat|10v1|CN817059759663093globlastp
4202LAB283wheat|gb164|BE398853759763093globlastp
4203LAB283wheat|gb164|BE443573759763093globlastp
4204LAB283lovegrass|gb167|EH188796759863092.51glotblastn
4205LAB283barley|10v1|BF253836759963092.5globlastp
4206LAB283barley|gb157SOLEXA|BF253836759963092.5globlastp
4207LAB283millet|09v1|EVO454PM013564760063092globlastp
4208LAB283switchgrass|gb167|DN140847760163092globlastp
4209LAB283cenchrus|gb166|EB652891760263091.5globlastp
4210LAB283lovegrass|gb167|DN480250760363091.5globlastp
4211LAB283switchgrass|gb167|FE612726760463091.5globlastp
4212LAB283wheat|gb164|CA502712760563090.4globlastp
4213LAB283brachypodium|09v1|DV477815760663089.9globlastp
4214LAB283catharanthus|gb166|EG561166760763089.8globlastp
4215LAB283ginger|gb164|DY346160760863089.8globlastp
4216LAB283pineapple|10v1|DT336417760963089.8globlastp
4217LAB283sugarcane|10v1|CA115516761063089.8globlastp
4218LAB283rice|gb170|OS07G47780761163089.7globlastp
4219LAB283maize|gb170|LLDQ246011761263089.4globlastp
4220LAB283wheat|gb164|BE352581761263089.4globlastp
4221LAB283wheat|gb164|BE404049761263089.4globlastp
4222LAB283oil_palm|gb166|CN600822761363089.3glotblastn
4223LAB283banana|gb167|ES433979761463088.8globlastp
4224LAB283barley|10v1|BG299572761563088.8globlastp
4225LAB283barley|gb157SOLEXA|AL505846761563088.8globlastp
4226LAB283fescue|gb161|DT685631761663088.8globlastp
4227LAB283oil_palm|gb166|EL686178761763088.8globlastp
4228LAB283pseudoroegneria|gb167|FF343982761863088.8globlastp
4229LAB283wheat|gb164|BE423765761963088.8globlastp
4230LAB283lolium|10v1|ES699035762063088.3globlastp
4231LAB283oat|10v1|GO582808762163088.3globlastp
4232LAB283leymus|gb166|EG374681762263088.3globlastp
4233LAB283banana|gb167|FF561221762363088.2globlastp
4234LAB283cassava|09v1|CK644077762463088.2globlastp
4235LAB283cassava|gb164|CK644077762463088.2globlastp
4236LAB283citrus|gb166|BQ623150762563088.2globlastp
4237LAB283cotton|gb164|DT557850762663088.2globlastp
4238LAB283sugarcane|gb157.3|CA080288762763088.2globlastp
4239LAB283cleome_gynandra|10v1|SRR015532S0020282762863087.7globlastp
4240LAB283cleome_spinosa|10v1|GR931300762963087.7globlastp
4241LAB283cleome_spinosa|10v1|GR931891763063087.7globlastp
4242LAB283flax|09v1|EU830561763163087.7globlastp
4243LAB283jatropha|09v1|GT229173763263087.7globlastp
4244LAB283amborella|gb166|CD483554763363087.7globlastp
4245LAB283banana|gb167|FF560367763463087.7globlastp
4246LAB283cacao|gb167|CA795583763563087.7globlastp
4247LAB283castorbean|09v1|EE255447763663087.7globlastp
4248LAB283castorbean|gb160|EE255447763663087.7globlastp
4249LAB283cotton|gb164|DT046974763763087.7globlastp
4250LAB283cotton|gb164|DW232816763863087.7globlastp
4251LAB283cowpea|gb166|FC459109763963087.7globlastp
4252LAB283ginger|gb164|DY368354764063087.7globlastp
4253LAB283grape|gb160|BQ796886764163087.7globlastp
4254LAB283onion|gb162|CF451866764263087.7globlastp
4255LAB283papaya|gb165|EX262198764363087.7globlastp
4256LAB283cleome_gynandra|10v1|SRR015532S0010711764463087.2globlastp
4257LAB283cleome_spinosa|10v1|SRR015531S0011099764563087.2globlastp
4258LAB283cucumber|09v1|DV631905764663087.2globlastp
4259LAB283banana|gb167|FL658404764763087.2globlastp
4260LAB283cassava|09v1|DV442672764863087.2globlastp
4261LAB283cassava|gb164|DV442672764863087.2globlastp
4262LAB283coffea|10v1|DV678801764963087.2globlastp
4263LAB283coffea|gb157.2|DV678801764963087.2globlastp
4264LAB283cotton|gb164|AI730706765063087.2globlastp
4265LAB283cotton|gb164|AI731751765163087.2globlastp
4266LAB283cotton|gb164|BE052367765263087.2globlastp
4267LAB283cotton|gb164|BF279005765063087.2globlastp
4268LAB283papaya|gb165|EX275159765363087.2globlastp
4269LAB283jatropha|09v1|FM892996765463087.17glotblastn
4270LAB283chickpea|09v2|AJ004961765563086.6globlastp
4271LAB283cleome_gynandra|10v1|SRR015532S0008000765663086.6globlastp
4272LAB283cleome_spinosa|10v1|SRR015531S0003355765763086.6globlastp
4273LAB283avocado|10v1|CO998684765863086.6globlastp
4274LAB283avocado|gb164|CO998684765863086.6globlastp
4275LAB283cassava|09v1|CK648694765963086.6globlastp
4276LAB283cassava|gb164|CK648694766063086.6globlastp
4277LAB283grape|gb160|BQ800472766163086.6globlastp
4278LAB283liquorice|gb171|FS244095766263086.6globlastp
4279LAB283melon|gb165|DV631905766363086.6globlastp
4280LAB283onion|gb162|CF436696766463086.6globlastp
4281LAB283peanut|gb171|CD038311766563086.6globlastp
4282LAB283peanut|gb171|CD038838766663086.6globlastp
4283LAB283pineapple|gb157.2|DT336417766763086.6globlastp
4284LAB283poplar|10v1|AI162670766863086.6globlastp
4285LAB283arabidopsis_lyrata|09v1|BQ834416766963086.1globlastp
4286LAB283cleome_gynandra|10v1|SRR015532S0012271767063086.1glotblastn
4287LAB283cucumber|09v1|DN910478767163086.1globlastp
4288LAB283nasturtium|10v1|GH163808767263086.1globlastp
4289LAB283apple|gb171|CN494008767363086.1globlastp
4290LAB283apple|gb171|CN864078767463086.1globlastp
4291LAB283banana|gb167|ES437537767563086.1globlastp
4292LAB283bean|gb167|CA897668767663086.1globlastp
4293LAB283bean|gb167|CA897674767763086.1globlastp
4294LAB283castorbean|09v1|CF981310767863086.1globlastp
4295LAB283castorbean|gb160|CF981310767963086.1glotblastn
4296LAB283cotton|gb164|AI730100768063086.1globlastp
4297LAB283cowpea|gb166|FF383705768163086.1globlastp
4298LAB283cowpea|gb166|FF384965768263086.1globlastp
4299LAB283ginger|gb164|DY349506768363086.1globlastp
4300LAB283grape|gb160|BM437118768463086.1globlastp
4301LAB283liquorice|gb171|FS244478768563086.1globlastp
4302LAB283melon|gb165|AM718598768663086.1globlastp
4303LAB283poplar|gb170|AI162670768763086.1globlastp
4304LAB283poplar|10v1|AI162871768863086.1globlastp
4305LAB283poplar|gb170|AI162871768863086.1globlastp
4306LAB283poplar|10v1|AI163306768963086.1globlastp
4307LAB283poplar|gb170|AI163306768963086.1globlastp
4308LAB283poppy|gb166|FE968414769063086.1globlastp
4309LAB283prunus|gb167|AJ827102769163086.1globlastp
4310LAB283prunus|gb167|CB822575769263086.1globlastp
4311LAB283soybean|gb168|AW288068769363086.1globlastp
4312LAB283walnuts|gb166|EL894571769463086.1globlastp
4313LAB283wheat|gb164|BQ838809769563086.1globlastp
4314LAB283ipomoea_nil|10v1|BJ556879769663085.6globlastp
4314LAB283ipomoea|gb157.2|BJ556879769663085.6globlastp
4315LAB283orobanche|10v1|SRR023189S0004601769763085.6globlastp
4316LAB283apple|gb171|CN898032769863085.6globlastp
4317LAB283citrus|gb166|CB293637769963085.6globlastp
4318LAB283eucalyptus|gb166|CT982220770063085.6globlastp
4319LAB283peanut|gb171|EG030272770163085.6globlastp
4320LAB283soybean|gb168|AW256698770263085.6globlastp
4321LAB283sunflower|gb162|BU672022770363085.6globlastp
4322LAB283triphysaria|10v1|BM356765770463085.1globlastp
4323LAB283triphysaria|10v1|BM356862770463085.1globlastp
4324LAB283triphysaria|10v1|EX990668770463085.1globlastp
4325LAB283ipomoea|gb157.2|BJ553202770563085.03glotblastn
4326LAB283eschscholzia|10v1|CD478146770663085globlastp
4327LAB283ipomoea_batatas|10v1|CB330344770763085globlastp
4328LAB283ipomoea_nil|10v1|BJ553202770863085globlastp
4329LAB283ipomoea_nil|10v1|CJ737673770963085globlastp
4330LAB283nasturtium|10v1|SRR032558S0018850771063085globlastp
4331LAB283solanum_phureja|09v1|SPHBG127682771163085globlastp
4332LAB283arabidopsis|gb165|AT5G27850771263085globlastp
4333LAB283b_oleracea|gb161|DY025769771363085globlastp
4334LAB283b_rapa|gb162|DY010000771363085globlastp
4335LAB283canola|10v1|CN730540771363085globlastp
4336LAB283canola|gb161|CN730540771363085globlastp
4337LAB283centaurea|gb166|EH737450771463085globlastp
4338LAB283cryptomeria|gb166|BW993132771563085globlastp
4339LAB283cynara|gb167|GE586442771663085globlastp
4340LAB283ipomoea|gb157.2|CB330344770763085globlastp
4341LAB283liriodendron|gb166|CK766210771763085globlastp
4342LAB283petunia|gb171|DY396235771863085globlastp
4343LAB283poplar|10v1|AI161894771963085globlastp
4344LAB283poplar|gb170|AI161894771963085globlastp
4345LAB283radish|gb164|EV537215771363085globlastp
4346LAB283radish|gb164|EV546651771363085globlastp
4347LAB283radish|gb164|EV566253772063085globlastp
4348LAB283radish|gb164|EW718156772063085globlastp
4349LAB283safflower|gb162|EL395026771463085globlastp
4350LAB283soybean|gb168|AL376539772163085globlastp
4351LAB283soybean|gb168|AW684723772263085globlastp
4352LAB283tobacco|gb162|BQ842820772363085globlastp
4353LAB283tobacco|gb162|DV158247772463085globlastp
4354LAB283triphysaria|gb164|BM356862772563084.6globlastp
4355LAB283gerbera|09v1|AJ750626772663084.5globlastp
4356LAB283lotus|09v1|BW595275772763084.5globlastp
4357LAB283pea|09v1|EX568904772863084.5globlastp
4358LAB283apple|gb171|CN875969772963084.5globlastp
4359LAB283arabidopsis|gb165|AT3G05590773063084.5globlastp
4360LAB283b_juncea|gb164|EVGN01032312490823773163084.5globlastp
4361LAB283b_oleracea|gb161|DY028050773263084.5globlastp
4362LAB283b_rapa|gb162|CX267092773363084.5globlastp
4363LAB283bean|gb167|CA897690773463084.5globlastp
4364LAB283canola|10v1|CD818850773263084.5globlastp
4365LAB283canola|gb161|CD818850773263084.5globlastp
4366LAB283chestnut|gb170|SRR006295S0003138773563084.5globlastp
4367LAB283cotton|gb164|BE053784773663084.5globlastp
4368LAB283fern|gb171|DK952766773763084.5globlastp
4369LAB283kiwi|gb166|FG397867773863084.5globlastp
4370LAB283lotus|09v1|LLCN825309773963084.5globlastp
4371LAB283lotus|gb157.2|CN825309773963084.5globlastp
4372LAB283oak|gb170|DN951034773563084.5globlastp
4373LAB283pine|gb157.2|AL750084774063084.5globlastp
4374LAB283radish|gb164|EX903877774163084.5globlastp
4375LAB283senecio|gb170|DY658757774263084.5globlastp
4376LAB283soybean|gb168|BI969217774363084.5globlastp
4377LAB283soybean|gb168|BI969863774463084.5globlastp
4378LAB283spruce|gb162|CO234240774563084.5globlastp
4379LAB283spurge|gb161|BE095307774663084.5globlastp
4380LAB283sunflower|gb162|CD845836774763084.5globlastp
4381LAB283sunflower|gb162|CD848533774863084.5globlastp
4382LAB283thellungiella|gb167|BQ079245774963084.5globlastp
4383LAB283tobacco|gb162|CV020739775063084.5globlastp
4384LAB283eschscholzia|10v1|CD477064775163084.49glotblastn
4385LAB283canola|gb161|CX278684775263084.49glotblastn
4386LAB283coffea|10v1|DV666712775363084globlastp
4387LAB283eggplant|10v1|FS007197775463084globlastp
4388LAB283ipomoea_batatas|10v1|CB330862775563084globlastp
4389LAB283physcomitrella|10v1|BJ158142775663084globlastp
4390LAB283physcomitrella|10v1|BJ185019775763084globlastp
4391LAB283bruguiera|gb166|BP938752775863084globlastp
4392LAB283cichorium|gb171|EH701900775963084globlastp
4393LAB283clover|gb162|BB918213776063084globlastp
4394LAB283dandelion|gb161|DQ160027776163084globlastp
4395LAB283lettuce|gb157.2|DW045621776263084globlastp
4396LAB283lettuce|10v1|DW075909776363084globlastp
4397LAB283lettuce|gb157.2|DW075909776363084globlastp
4398LAB283lettuce|gb157.2|DW107696776263084globlastp
4399LAB283lotus|09v1|LLAW720439776463084globlastp
4400LAB283pine|gb157.2|AW290194776563084globlastp
4401LAB283potato|gb157.2|AW906174776663084globlastp
4402LAB283radish|gb164|EV536533776763084globlastp
4403LAB283radish|gb164|EV536583776863084globlastp
4404LAB283radish|gb164|EV550169776963084globlastp
4405LAB283radish|gb164|EV568547777063084globlastp
4406LAB283radish|gb164|EW716009776763084globlastp
4407LAB283radish|gb164|EW728074776763084globlastp
4408LAB283radish|gb164|T25181776763084globlastp
4409LAB283radish|gb164|T25182776763084globlastp
4410LAB283safflower|gb162|EL408656777163084globlastp
4411LAB283tea|10v1|CV013664777263084globlastp
4412LAB283tea|gb171|CV013664777263084globlastp
4413LAB283tobacco|gb162|CV016133777363084globlastp
4414LAB283tobacco|gb162|CV019619777463084globlastp
4415LAB283tomato|09v1|BG127682777563084globlastp
4416LAB283tomato|gb164|BG127682777563084globlastp
4417LAB283triphysaria|gb164|BM356765777663084globlastp
4418LAB283lettuce|10v1|DW045621776263084globlastp
4419LAB283pine|10v1|AW010654776563084globlastp
4420LAB283physcomitrella|gb157|BJ158142777763083.96glotblastn
4421LAB283triphysaria|10v1|EY014546777863083.5globlastp
4422LAB283beet|gb162|BF011058777963083.42glotblastn
4423LAB283dandelion|gb161|DY806963778063083.42glotblastn
4424LAB283physcomitrella|gb157|AW126838778163083.42glotblastn
4425LAB283physcomitrella|gb157|BG362299778263083.42glotblastn
4426LAB283arabidopsis_lyrata|09v1|JGIAL022452778363083.4globlastp
4427LAB283canola|10v1|CD812625778463083.4globlastp
4428LAB283canola|10v1|CD840995778563083.4globlastp
4429LAB283ipomoea_batatas|10v1|EE882526778663083.4globlastp
4430LAB283orobanche|10v1|SRR023189S0022111778763083.4globlastp
4431LAB283physcomitrella|10v1|AW126838778863083.4globlastp
4432LAB283physcomitrella|10v1|BG362299778963083.4globlastp
4433LAB283pigeonpea|gb171|GR466455779063083.4globlastp
4434LAB283tragopogon|10v1|SRR020205S0015140779163083.4globlastp
4435LAB283tragopogon|10v1|SRR020205S0106933779263083.4globlastp
4436LAB283b_juncea|gb164|EVGN00081204610071779363083.4globlastp
4437LAB283b_oleracea|gb161|DY025951779463083.4globlastp
4438LAB283b_oleracea|gb161|DY027454778463083.4globlastp
4439LAB283b_rapa|gb162|CV432333778463083.4globlastp
4440LAB283b_rapa|gb162|CV433788778463083.4globlastp
4441LAB283b_rapa|gb162|L33551779563083.4globlastp
4442LAB283b_rapa|gb162|L33568779563083.4globlastp
4443LAB283canola|gb161|CD812625778463083.4globlastp
4444LAB283canola|10v1|CD814590779563083.4globlastp
4445LAB283canola|gb161|CD814590779563083.4globlastp
4446LAB283canola|10v1|CD820367779563083.4globlastp
4447LAB283canola|gb161|CD820367779563083.4globlastp
4448LAB283canola|gb161|CX188482778463083.4globlastp
4449LAB283canola|10v1|T18367779463083.4globlastp
4450LAB283canola|gb161|T18367779463083.4globlastp
4451LAB283centaurea|gb166|EH738805779663083.4globlastp
4452LAB283centaurea|gb166|EH739466779763083.4globlastp
4453LAB283cichorium|gb171|DT213052779863083.4globlastp
4454LAB283cynara|gb167|GE588262779963083.4globlastp
4455LAB283fern|gb171|DK949008780063083.4globlastp
4456LAB283ipomoea|gb157.2|CJ737673780163083.4globlastp
4457LAB283lettuce|gb157.2|DW076892780263083.4globlastp
4458LAB283lettuce|gb157.2|DW145375780363083.4globlastp
4459LAB283lettuce|gb157.2|DW148040780463083.4globlastp
4460LAB283nicotiana_benthamiana|gb162|CN745163780563083.4globlastp
4461LAB283oak|gb170|DN949820780663083.4globlastp
4462LAB283pepper|gb171|BM064100780763083.4globlastp
4463LAB283pepper|gb171|BM068255780863083.4globlastp
4464LAB283petunia|gb171|CV295039780963083.4globlastp
4465LAB283petunia|gb171|CV299987781063083.4globlastp
4466LAB283radish|gb164|EV535201781163083.4globlastp
4467LAB283radish|gb164|EV551301781263083.4globlastp
4468LAB283radish|gb164|EY904311781363083.4globlastp
4469LAB283safflower|gb162|EL374888781463083.4globlastp
4470LAB283thellungiella|gb167|BY803938781563083.4globlastp
4471LAB283canola|10v1|CX188482778463083.4globlastp
4472LAB283ginseng|10v1|CN848661781663082.9globlastp
4473LAB283physcomitrella|10v1|AW126801781763082.9globlastp
4474LAB283b_oleracea|gb161|DY026489781863082.9globlastp
4475LAB283canola|10v1|CD812987781863082.9globlastp
4476LAB283canola|gb161|CD812987781863082.9globlastp
4477LAB283chestnut|gb170|SRR006295S0000969781963082.9globlastp
4478LAB283dandelion|gb161|DY806552782063082.9globlastp
4479LAB283iceplant|gb164|BE033787782163082.9globlastp
4480LAB283kiwi|gb166|FG397111782263082.9globlastp
4481LAB283lettuce|gb157.2|DW046061782363082.9globlastp
4482LAB283lettuce|gb157.2|DW079832782463082.9globlastp
4483LAB283lettuce|gb157.2|DW106263782463082.9globlastp
4484LAB283lettuce|gb157.2|DW108449782363082.9globlastp
4485LAB283liriodendron|gb166|DT580181782563082.9globlastp
4486LAB283spikemoss|gb165|DN839616782663082.9globlastp
4487LAB283spikemoss|gb165|FE445919782763082.9globlastp
4488LAB283spruce|gb162|CO215472782863082.9globlastp
4489LAB283sunflower|gb162|EL465100782963082.9globlastp
4490LAB283zamia|gb166|DY031019783063082.9globlastp
4491LAB283lettuce|10v1|DW046061782363082.9globlastp
4492LAB283lettuce|10v1|DW065820782463082.9globlastp
4493LAB283b_rapa|gb162|BG544074783163082.89glotblastn
4494LAB283beet|gb162|BQ592402783263082.89glotblastn
4495LAB283kiwi|gb166|FG418360783363082.89glotblastn
4496LAB283physcomitrella|gb157|AW126801783463082.89glotblastn
4497LAB283eggplant|10v1|FS000992783563082.4globlastp
4498LAB283salvia|10v1|CV164239783663082.4globlastp
4499LAB283salvia|10v1|SRR014553S0002907783763082.4globlastp
4500LAB283tragopogon|10v1|SRR020205S0018138783863082.4globlastp
4501LAB283artemisia|10v1|EY032066783963082.4globlastp
4502LAB283artemisia|gb164|EY032066783963082.4globlastp
4503LAB283artemisia|10v1|EY056461784063082.4globlastp
4504LAB283artemisia|gb164|EY056461784063082.4globlastp
4505LAB283basilicum|10v1|DY321729784163082.4globlastp
4506LAB283cichorium|gb171|EH683001784263082.4globlastp
4507LAB283cycas|gb166|CB088957784363082.4globlastp
4508LAB283medicago|09v1|AW684723784463082.4globlastp
4509LAB283medicago|gb157.2|AW684723784463082.4globlastp
4510LAB283nicotiana_benthamiana|gb162|CN742004784563082.4globlastp
4511LAB283poppy|gb166|FE964997784663082.4globlastp
4512LAB283radish|gb164|EW713569784763082.4globlastp
4513LAB283spruce|gb162|CO231722784863082.4globlastp
4514LAB283b_juncea|gb164|EVGN00901614231757784963082.35glotblastn
4515LAB283cynara|gb167|GE588021785063082.35glotblastn
4516LAB283iceplant|gb164|BE033487785163082.35glotblastn
4517LAB283medicago|09v1|LLAW256698785263081.9globlastp
4518LAB283medicago|gb157.2|AW256698785263081.9globlastp
4519LAB283monkeyflower|10v1|DV207165785363081.8globlastp
4520LAB283monkeyflower|10v1|DV208950785463081.8globlastp
4521LAB283salvia|10v1|FE536981785563081.8globlastp
4522LAB283solanum_phureja|09v1|SPHBG127027785663081.8globlastp
4523LAB283antirrhinum|gb166|AJ558493785763081.8globlastp
4524LAB283antirrhinum|gb166|AJ788113785863081.8globlastp
4525LAB283clover|gb162|BB923394785963081.8globlastp
4526LAB283lettuce|gb157.2|DW065820786063081.8globlastp
4527LAB283potato|gb157.2|BG350906785663081.8globlastp
4528LAB283potato|gb157.2|BG592372785663081.8globlastp
4529LAB283potato|10v1|BG350906785663081.8globlastp
4530LAB283artemisia|gb164|EY033512786163081.3globlastp
4531LAB283basilicum|gb157.3|DY321729786263081.3globlastp
4532LAB283liquorice|gb171|FS266383786363081.3globlastp
4533LAB283marchantia|gb166|C96610786463081.3globlastp
4534LAB283medicago|09v1|BE249407786563081.3globlastp
4535LAB283medicago|gb157.2|BE249407786563081.3globlastp
4536LAB283potato|gb157.2|BG589732786663081.3globlastp
4537LAB283tomato|09v1|BG127027786663081.3globlastp
4538LAB283tomato|gb164|BG127027786663081.3globlastp
4539LAB283artemisia|10v1|EY033512786763081.28glotblastn
4540LAB283triphysaria|gb164|BM356434786863080.9globlastp
4541LAB283triphysaria|gb164|EY126952786963080.9globlastp
4542LAB283triphysaria|10v1|EY133632787063080.9globlastp
4543LAB283triphysaria|gb164|EY133632787063080.9globlastp
4544LAB283ginseng|10v1|CN848265787163080.7globlastp
4545LAB283petunia|gb171|DC244521787263080.5globlastp
4546LAB283triphysaria|10v1|EY126952787363080.3globlastp
4547LAB283triphysaria|10v1|BM356434787463080.3globlastp
4548LAB284maize|gb170|AW091217787563189.7globlastp
4549LAB286maize|gb170|AI001359787663286.6globlastp
4550LAB286sorghum|gb161.crp|CF481271787763284.11glotblastn
4551LAB286sorghum|09v1|CF481271787863283.4globlastp
4552LAB289sugarcane|gb157.3|BQ537261787963399.7globlastp
4553LAB289sugarcane|gb157.3|CA072303788063399.7globlastp
4554LAB289sugarcane|10v1|BQ537261787963399.7globlastp
4555LAB289maize|gb170|AI491553788163397.4globlastp
4556LAB289maize|gb170|BQ294294788263396.8globlastp
4557LAB289switchgrass|gb167|FE605676788363395.9globlastp
4558LAB289rice|gb170|OS07G39280788463394.5globlastp
4559LAB289wheat|gb164|BE470949788563390globlastp
4560LAB289leymus|gb166|EG384787788663389.9globlastp
4561LAB289barley|10v1|BE412637788763389.7globlastp
4562LAB289barley|gb157SOLEXA|BE412637788763389.7globlastp
4563LAB289brachypodium|gb169|BE412637788863389.7globlastp
4564LAB289brachypodium|09v1|DV472699788963389.4glotblastn
4565LAB290sorghum|09v1|SB05G023240789063497.4globlastp
4565LAB290_H0sorghum|09v1|SB05G023240789068884.9globlastp
4566LAB290sorghum|gb161.crp|BE363468789063497.4globlastp
4566LAB290_H0sorghum|gb161.crp|BE363468789068884.9globlastp
4567LAB290sugarcane|gb157.3|CA084515789163482.8globlastp
4567LAB290_H0sugarcane|gb157.3|CA084515789168884.24glotblastn
4568LAB290switchgrass|gb167|DN143335789263482.1globlastp
4569LAB292sugarcane|10v1|CA065722789363587.8globlastp
4570LAB292sugarcane|gb157.3|CA065722789463587.5globlastp
4571LAB292maize|gb170|CB617317789563583.44glotblastn
4572LAB292maize|gb170|AI901624789663582.8globlastp
4573LAB293maize|gb170|CD946962789763688.3globlastp
4574LAB296switchgrass|gb167|FL698667789863993.55glotblastn
4575LAB296sugarcane|10v1|CA102880789963992.1globlastp
4576LAB296sugarcane|gb157.3|CA102880790063989.2globlastp
4577LAB296rice|gb170|OS04G46880790163986.1globlastp
4578LAB296brachypodium|09v1|SRR031795S0000152790263985globlastp
4579LAB296brachypodium|gb169|BG262952790263985globlastp
4580LAB296maize|gb170|LLEU957736790363985globlastp
4581LAB296maize|gb170|BM259168790463984.3globlastp
4582LAB297sorghum|gb161.crp|BI098059790564082.4globlastp
4583LAB297sorghum|09v1|SB05G000860790664081.9globlastp
4584LAB302maize|gb170|AA979768790764481.3glotblastn
4585LAB302maize|gb170|LLBE051112790864481.3glotblastn
4586LAB304maize|gb170|DR813947790964692.27glotblastn
4587LAB304switchgrass|gb167|FL902445791064687.63glotblastn
4588LAB304rice|gb170|OS03G03550791164684.1glotblastn
4589LAB304maize|gb170|CRPZM2N005678791264683.76glotblastn
4590LAB307soybean|gb168|AW697150791364891.4globlastp
4591LAB307lotus|09v1|BW594599791464884.9globlastp
4592LAB307chickpea|09v2|GFXFJ477886X1791564884.7globlastp
4593LAB307bean|gb167|CV541797791664884.7globlastp
4594LAB307medicago|09v1|BE325764791764883.7globlastp
4595LAB307medicago|gb157.2|BE325764791764883.7globlastp
4596LAB307peanut|gb171|EC365261791864882.6globlastp
4597LAB308soybean|gb168|BG449301791964996.3globlastp
4598LAB308cowpea|gb166|AY257179792064987.9globlastp
4599LAB308medicago|09v1|AW257191792164983.4globlastp
4600LAB309soybean|gb168|EV263579792265092.5globlastp
4601LAB311lettuce|gb157.2|DW132299792365283.5globlastp
4602LAB311lettuce|10v1|DW052365792465283.5globlastp
4603LAB311lettuce|gb157.2|DW087492792565283globlastp
4604LAB311lettuce|gb157.2|DW048584792665282.2globlastp
4605LAB311cichorium|gb171|EH676540792765280.2globlastp
4606LAB311lettuce|gb157.2|DW117160792865280globlastp
4607LAB312potato|gb157.2|BG096129792965398.1globlastp
4608LAB312solanum_phureja|09v1|SPHAF079231793065397.8globlastp
4609LAB312potato|gb157.2|BQ117749793165397.8globlastp
4610LAB312eggplant|10v1|FS008591793265394globlastp
4611LAB312pepper|gb171|BM066919793365393.4globlastp
4612LAB312tobacco|gb162|AF113545793465390.5globlastp
4613LAB312potato|10v1|BG096129793565388.6globlastp
4614LAB312poplar|gb170|AI162953793665380.7globlastp
4615LAB312poplar|10v1|AI163602793765380.1globlastp
4616LAB312poplar|10v1|AI162953793865380.1globlastp
4617LAB314solanum_phureja|09v1|SPHBG627257793965495.7globlastp
4618LAB314potato|10v1|BE921587794065495.1globlastp
4619LAB314potato|gb157.2|BE921587794165492.3globlastp
4620LAB314tobacco|gb162|DW001183794265483.89glotblastn
4621LAB315potato|10v1|CV503760794365593.5globlastp
4622LAB315potato|gb157.2|CV503760794365593.5globlastp
4623LAB315solanum_phureja|09v1|SPHAI487529794465593globlastp
4624LAB317potato|gb157.2|BG595203794565798.1globlastp
4625LAB317potato|10v1|BG595203794665797.8globlastp
4626LAB317eggplant|10v1|FS033756794765790.8globlastp
4627LAB317solanum_phureja|09v1|SPHAI773737794865789.7globlastp
4628LAB317pepper|gb171|CA513828794965783.6globlastp
4629LAB317nicotiana_benthamiana|gb162|CK284916795065782.6globlastp
4630LAB319solanum_phureja|09v1|SPHAW032666795165994.1globlastp
4631LAB319potato|10v1|BG350293795165994.1globlastp
4632LAB319potato|gb157.2|BG350293795165994.1globlastp
4633LAB319tobacco|gb162|DW005109795265982.8globlastp
4634LAB319petunia|gb171|AM489763795365980.2globlastp
4635LAB320solanum_phureja|09v1|SPHAW979674795466092.9globlastp
4636LAB324solanum_phureja|09v1|SPHBG628155795566299.2globlastp
4637LAB324eggplant|10v1|FS000167795666297.5globlastp
4638LAB324tobacco|gb162|EB424763795766297.5globlastp
4639LAB324pepper|gb171|CA517713795866297.1globlastp
4640LAB324petunia|gb171|PETTRNSFB795966296.7globlastp
4641LAB324coffea|10v1|DV664667796066294.2globlastp
4642LAB324coffea|gb157.2|DV664667796066294.2globlastp
4643LAB324ipomoea_nil|10v1|BJ555139796166290.9globlastp
4643LAB324ipomoea|gb157.2|BJ555139796166290.9globlastp
4644LAB324grape|gb160|AF373603796266290.1globlastp
4645LAB324kiwi|gb166|FG414728796366287.8globlastp
4646LAB324antirrhinum|gb166|AY306142796466287.7globlastp
4647LAB324castorbean|09v1|EE259386796566287.6globlastp
4648LAB324prunus|gb167|BU039561796666287.6globlastp
4649LAB324cucumber|09v1|CD726807796766287.2globlastp
4650LAB324papaya|gb165|EX248886796866287.2globlastp
4651LAB324cacao|gb167|CU475790796966287globlastp
4652LAB324antirrhinum|gb166|AY306140797066286.8globlastp
4653LAB324antirrhinum|gb166|AY306141797166286.5globlastp
4654LAB324strawberry|gb164|CO381239797266286.4globlastp
4655LAB324triphysaria|10v1|SRR023501S0006880797366286.3globlastp
4656LAB324cassava|09v1|JGICASSAVA45541M1797466286globlastp
4657LAB324cotton|gb164|BE055122797566285.6globlastp
4658LAB324apple|gb171|CN445627797666285.5globlastp
4659LAB324nasturtium|10v1|SRR032558S0070643797766284.8globlastp
4660LAB324melon|gb165|AM736201797866284.7globlastp
4661LAB324cotton|gb164|AI725419797966284.6globlastp
4662LAB324cotton|gb164|BF273794797966284.6globlastp
4663LAB324citrus|gb166|CB290298798066284.4globlastp
4664LAB324lotus|09v1|AY770397798166284.4globlastp
4665LAB324lotus|gb157.2|AY770397798166284.4globlastp
4666LAB324nasturtium|10v1|SRR032558S0103587798266283.6globlastp
4667LAB324cichorium|gb171|EH686695798366283.3globlastp
4668LAB324medicago|09v1|CRPMT000849798466283.1globlastp
4669LAB324poplar|10v1|BU877006798566283.1globlastp
4670LAB324monkeyflower|10v1|DV209383798666282.7globlastp
4671LAB324lettuce|10v1|DY978967798766282.4globlastp
4672LAB324dandelion|gb161|DY812927798866282globlastp
4673LAB324poplar|10v1|BU876142798966281.9globlastp
4674LAB324poplar|gb170|BU876142798966281.9globlastp
4675LAB324soybean|gb168|BE822733799066281.8globlastp
4676LAB324soybean|gb168|BI970422799166281.4globlastp
4677LAB324walnuts|gb166|CB303585799266281.3globlastp
4678LAB324peanut|gb171|AY517932799366280.7globlastp
4679LAB324sunflower|gb162|DY928057799466280glotblastn
4680LAB325potato|gb157.2|BQ514801799566394.5glotblastn
4681LAB325solanum_phureja|09v1|SPHBG630481799666394.2globlastp
4682LAB325potato|10v1|BQ514801799766394.2globlastp
4683LAB325potato|gb157.2|BM108612799866388.4globlastp
4684LAB325pepper|gb171|BM060738799966382.4globlastp
4685LAB326potato|10v1|BE922713800066482globlastp
4686LAB327solanum_phureja|09v1|SPHBI934696800166599.5globlastp
4687LAB327tobacco|gb162|GFXX79005X1800266597.8globlastp
4688LAB327cucumber|09v1|AA660065800366595.2globlastp
4689LAB327citrus|gb166|CB293061800466595.2globlastp
4690LAB327cassava|09v1|CK642375800566594.4globlastp
4691LAB327cassava|gb164|CK642375800566594.4globlastp
4692LAB327liriodendron|gb166|DT580890800666594.4globlastp
4693LAB327poplar|10v1|AI163141800766594.4globlastp
4694LAB327poplar|gb170|AI163141800766594.4globlastp
4695LAB327spurge|gb161|BI975260800866594.4globlastp
4696LAB327cucumber|09v1|DV632499800966594.2globlastp
4697LAB327castorbean|09v1|EE255332801066594.2globlastp
4698LAB327castorbean|gb160|EE255332801066594.2globlastp
4699LAB327grape|gb160|BQ793182801166594.2globlastp
4700LAB327strawberry|gb164|CO381092801266594.2globlastp
4701LAB327cotton|gb164|AI726446801366593.9globlastp
4702LAB327cotton|gb164|AI730198801466593.9globlastp
4703LAB327grape|gb160|CB917904801566593.9globlastp
4704LAB327liriodendron|gb166|CO998849801666593.9globlastp
4705LAB327walnuts|gb166|CV195060801766593.9globlastp
4706LAB327cleome_spinosa|10v1|GR932329801866593.7globlastp
4707LAB327eschscholzia|10v1|CD476730801966593.7globlastp
4708LAB327nasturtium|10v1|GH163469802066593.7globlastp
4709LAB327nasturtium|10v1|SRR032558S0000854802166593.7globlastp
4710LAB327nasturtium|10v1|SRR032558S0006059802266593.7globlastp
4711LAB327citrus|gb166|CF417897802366593.7globlastp
4712LAB327oil_palm|gb166|CN600175802466593.7globlastp
4713LAB327sunflower|gb162|CD851809802566593.7globlastp
4714LAB327monkeyflower|10v1|DV208648802666593.5globlastp
4715LAB327solanum_phureja|09v1|SPHBG134543802766593.5globlastp
4716LAB327apple|gb171|AY347787802866593.5globlastp
4717LAB327apple|gb171|CN581798802966593.5globlastp
4718LAB327aquilegia|10v1|DR937723803066593.5globlastp
4719LAB327aquilegia|gb157.3|DR937723803066593.5globlastp
4720LAB327avocado|10v1|CV003076803166593.5globlastp
4721LAB327avocado|gb164|CV003076803166593.5globlastp
4722LAB327cacao|gb167|CU473741803266593.5globlastp
4723LAB327cotton|gb164|AI727813803366593.5globlastp
4724LAB327nicotiana_benthamiana|gb162|CN743455803466593.5globlastp
4725LAB327poplar|10v1|BI120621803566593.5globlastp
4726LAB327poplar|gb170|BI120621803566593.5globlastp
4727LAB327potato|gb157.2|BF460248802766593.5globlastp
4728LAB327tobacco|gb162|AJ632823803666593.5globlastp
4729LAB327tobacco|gb162|X79138803766593.5globlastp
4730LAB327tomato|09v1|BG127387803866593.5globlastp
4731LAB327tomato|gb164|AI637390803866593.5globlastp
4732LAB327tomato|09v1|BG134543802766593.5globlastp
4733LAB327tomato|gb164|BG134543802766593.5globlastp
4734LAB327solanum_phureja|09v1|SPHEG016197803966593.2globlastp
4735LAB327apple|gb171|CN494642804066593.2globlastp
4736LAB327cichorium|gb171|DT212028804166593.2globlastp
4737LAB327clover|gb162|BB939080804266593.2globlastp
4738LAB327grape|gb160|BM437878804366593.2globlastp
4739LAB327lettuce|gb157.2|DW070872804466593.2globlastp
4740LAB327oak|gb170|CU640723804566593.2globlastp
4741LAB327oil_palm|gb166|ES323934804666593.2globlastp
4742LAB327peanut|gb171|CD037791804766593.2globlastp
4743LAB327potato|gb157.2|BF052374804866593.2globlastp
4744LAB327potato|gb157.2|BG350562804866593.2globlastp
4745LAB327prunus|gb167|BU046232804966593.2globlastp
4746LAB327soybean|gb168|AJ388958805066593.2globlastp
4747LAB327soybean|gb168|AW690650805166593.2globlastp
4748LAB327soybean|gb168|AW697016805166593.2globlastp
4749LAB327tobacco|gb162|CV019594805266593.2globlastp
4750LAB327solanum_phureja|09v1|SPHAI637390805366593globlastp
4751LAB327apple|gb171|CN495362805466593globlastp
4752LAB327artemisia|10v1|EY045818805566593globlastp
4753LAB327cassava|09v1|FF380298805666593globlastp
4754LAB327chestnut|gb170|SRR006295S0000341805766593globlastp
4755LAB327chestnut|gb170|SRR006295S0005786805866593globlastp
4756LAB327cotton|gb164|BE054566805966593globlastp
4757LAB327lettuce|10v1|DW089577806066593globlastp
4758LAB327lotus|09v1|LLBG662143806166593globlastp
4759LAB327medicago|09v1|AA660688806266593globlastp
4760LAB327medicago|gb157.2|AA660688806266593globlastp
4761LAB327melon|gb165|DV632499806366593globlastp
4762LAB327oak|gb170|DB996889806466593globlastp
4763LAB327papaya|gb165|AM903981806566593globlastp
4764LAB327pepper|gb171|CA515957806666593globlastp
4765LAB327poplar|gb170|BU871877806766593globlastp
4766LAB327prunus|gb167|BU039863806866593globlastp
4767LAB327soybean|gb168|AL370120806966593globlastp
4768LAB327sunflower|gb162|BU672037807066593globlastp
4769LAB327sunflower|gb162|CD849909807166593globlastp
4770LAB327tobacco|gb162|CV016269807266593globlastp
4771LAB327poplar|10v1|AI163175807366593globlastp
4772LAB327coffea|10v1|DV665562807466592.8globlastp
4773LAB327coffea|gb157.2|DV665562807466592.8globlastp
4774LAB327cleome_gynandra|10v1|SRR015532S0001004807566592.7globlastp
4775LAB327cacao|gb167|EH057828807666592.7globlastp
4776LAB327castorbean|09v1|EE258638807766592.7globlastp
4777LAB327castorbean|gb160|EE258638807766592.7globlastp
4778LAB327cichorium|gb171|DT211464807866592.7globlastp
4779LAB327cowpea|gb166|FC457491807966592.7globlastp
4780LAB327kiwi|gb166|FG403474808066592.7globlastp
4781LAB327medicago|09v1|BE239304808166592.7globlastp
4782LAB327medicago|gb157.2|BE239304808166592.7globlastp
4783LAB327petunia|gb171|CV293104808266592.7globlastp
4784LAB327poplar|10v1|BU871877808366592.7globlastp
4785LAB327soybean|gb168|AA660688808466592.7globlastp
4786LAB327soybean|gb168|AL379116808566592.7globlastp
4787LAB327soybean|gb168|BI420953808666592.7globlastp
4788LAB327strawberry|gb164|CO380304808766592.7globlastp
4789LAB327cassava|09v1|JGICASSAVA37390VALIDM1808866592.5globlastp
4790LAB327pea|09v1|CD859558808966592.5globlastp
4791LAB327artemisia|gb164|EY045818809066592.5globlastp
4792LAB327artemisia|10v1|EY084194809166592.5globlastp
4793LAB327artemisia|gb164|EY084194809166592.5globlastp
4794LAB327bean|gb167|CA898099809266592.5globlastp
4795LAB327ginger|gb164|DY344990809366592.5globlastp
4796LAB327prunus|gb167|BU039728809466592.5globlastp
4797LAB327soybean|gb168|AW586495809566592.5globlastp
4798LAB327soybean|gb168|CD415289809666592.5globlastp
4799LAB327tomato|09v1|BG135965809766592.5globlastp
4800LAB327tomato|gb164|BG135965809766592.5globlastp
4801LAB327jatropha|09v1|GO247020809866592.3globlastp
4802LAB327cowpea|gb166|FF382852809966592.3globlastp
4803LAB327cowpea|gb166|FF394250810066592.3globlastp
4804LAB327lotus|09v1|BI420953810166592.3globlastp
4805LAB327lotus|gb157.2|BI420953810166592.3globlastp
4806LAB327oak|gb170|CU656288810266592.3globlastp
4807LAB327potato|10v1|BE924067810366592.3globlastp
4808LAB327tobacco|gb162|X79137810466592.3globlastp
4809LAB327canola|10v1|CD836425810566592.3globlastp
4810LAB327arabidopsis_lyrata|09v1|JGIAL004953810666592globlastp
4811LAB327arabidopsis_lyrata|09v1|JGIAL009850810766592globlastp
4812LAB327monkeyflower|10v1|DV206993810866592globlastp
4813LAB327oat|10v1|GO586168810966592globlastp
4814LAB327arabidopsis|gb165|AT3G13920811066592globlastp
4815LAB327canola|gb161|CD823763811166592globlastp
4816LAB327cenchrus|gb166|EB653990811266592globlastp
4817LAB327chestnut|gb170|SRR006295S0005347811366592globlastp
4818LAB327kiwi|gb166|FG403265811466592globlastp
4819LAB327maize|gb170|ZMU73459811566592globlastp
4820LAB327medicago|09v1|AW256944811666592globlastp
4821LAB327medicago|gb157.2|AW256944811666592globlastp
4822LAB327pepper|gb171|BM065705811766592globlastp
4823LAB327sorghum|09v1|SB10G028940811866592globlastp
4824LAB327sorghum|gb161.crp|ZMU73459811866592globlastp
4825LAB327sugarcane|gb157.3|AA525682811966592globlastp
4826LAB327switchgrass|gb167|FE602797812066592globlastp
4827LAB327oat|10v1|GO581813812166591.8globlastp
4828LAB327b_oleracea|gb161|AM386369812266591.8globlastp
4829LAB327b_oleracea|gb161|AM387779812366591.8globlastp
4830LAB327b_rapa|gb162|BQ790684812366591.8globlastp
4831LAB327barley|10v1|BE427740812466591.8globlastp
4832LAB327barley|gb157SOLEXA|BE427740812466591.8globlastp
4833LAB327bean|gb167|CA898100812566591.8globlastp
4834LAB327brachypodium|09v1|DV470402812666591.8globlastp
4835LAB327brachypodium|gb169|Z21510812666591.8globlastp
4836LAB327canola|gb161|CD813607812366591.8globlastp
4837LAB327canola|gb161|CD822634812766591.8globlastp
4838LAB327canola|gb161|CD836953812366591.8globlastp
4839LAB327cowpea|gb166|FF382264812866591.8globlastp
4840LAB327kiwi|gb166|FG397118812966591.8globlastp
4841LAB327lotus|09v1|BP036168813066591.8globlastp
4842LAB327maize|gb170|AF007580813166591.8globlastp
4843LAB327soybean|gb168|CA783189813266591.8globlastp
4844LAB327sugarcane|gb157.3|CA071075813366591.8globlastp
4845LAB327switchgrass|gb167|FE602798813466591.8globlastp
4846LAB327triphysaria|10v1|BE574917813566591.8globlastp
4847LAB327wheat|gb164|BE398943813666591.8globlastp
4848LAB327wheat|gb164|BE400861813766591.8globlastp
4849LAB327wheat|gb164|BE402776813666591.8globlastp
4850LAB327wheat|gb164|Z21510812466591.8globlastp
4851LAB327sugarcane|10v1|CA071075813366591.8globlastp
4852LAB327orobanche|10v1|SRR023189S0018945813866591.5globlastp
4853LAB327arabidopsis|gb165|AT1G54270813966591.5globlastp
4854LAB327barley|gb157SOLEXA|BE411837814066591.5globlastp
4855LAB327canola|gb161|DY030421814166591.5globlastp
4856LAB327canola|gb161|EG020438814166591.5globlastp
4857LAB327cotton|gb164|AI728255814266591.5globlastp
4858LAB327millet|09v1|DQ013263814366591.5globlastp
4859LAB327rice|gb170|OS02G05330814466591.5globlastp
4860LAB327sorghum|09v1|SB04G003390814566591.5globlastp
4861LAB327sorghum|gb161.crp|ZMU17979814566591.5globlastp
4862LAB327barley|10v1|BE411837814066591.5globlastp
4863LAB327canola|10v1|EE456605814666591.5globlastp
4864LAB327artemisia|gb164|EY063986814766591.3globlastp
4865LAB327canola|10v1|CD822634814866591.3globlastp
4866LAB327canola|10v1|DY002101814866591.3globlastp
4867LAB327leymus|gb166|CD808554814966591.3globlastp
4868LAB327rice|gb170|OS06G48750815066591.3globlastp
4869LAB327millet|gb161|DQ013263815166591.1globlastp
4870LAB327lettuce|gb157.2|DW047925815266591.04glotblastn
4871LAB327cowpea|gb166|FC458343815366591globlastp
4872LAB327maize|gb170|LLZMU17979815466591globlastp
4873LAB327b_oleracea|gb161|GFXAF180356X1815566590.8globlastp
4874LAB327bean|gb167|CA905627815666590.8globlastp
4875LAB327canola|10v1|CD837669815766590.8globlastp
4876LAB327canola|gb161|CD837669815766590.8globlastp
4877LAB327cenchrus|gb166|BM084681815866590.8globlastp
4878LAB327nuphar|gb166|CD474917815966590.8globlastp
4879LAB327triphysaria|10v1|BE574926816066590.8globlastp
4880LAB327triphysaria|gb164|BE574926816166590.6globlastp
4881LAB327monkeyflower|10v1|DV210546816266590.3globlastp
4882LAB327cycas|gb166|CB088419816366590.3globlastp
4883LAB327poplar|gb170|BU814784816466590.1globlastp
4884LAB327millet|09v1|EVO454PM015209816566589.6globlastp
4885LAB327pea|09v1|AY167671816666589.6globlastp
4886LAB327potato|10v1|BF460248816766589.6globlastp
4887LAB327potato|10v1|BG350562816866589.6globlastp
4888LAB327safflower|gb162|EL375669816966589.59glotblastn
4889LAB327canola|10v1|CD813607817066589.5globlastp
4890LAB327canola|10v1|CD836953817166589.3globlastp
4891LAB327aquilegia|10v1|DR917189817266589.3globlastp
4892LAB327aquilegia|gb157.3|DR917189817266589.3globlastp
4893LAB327iceplant|gb164|BE036146817366589.3globlastp
4894LAB327triphysaria|10v1|EY006504817466589.1globlastp
4895LAB327lettuce|gb157.2|DW104332817566588.9globlastp
4896LAB327physcomitrella|10v1|AW145733817666588.6globlastp
4897LAB327cacao|gb167|CU512667817766588.6globlastp
4898LAB327marchantia|gb166|C96517817866588.6globlastp
4899LAB327physcomitrella|gb157|AW145733817666588.6globlastp
4900LAB327pine|10v1|AA556416817966588.6globlastp
4901LAB327pine|gb157.2|AA556416817966588.6globlastp
4902LAB327spruce|gb162|CO218039818066588.6globlastp
4903LAB327canola|10v1|DY030421818166588.5globlastp
4904LAB327arabidopsis_lyrata|09v1|JGIAL007533818266588.4globlastp
4905LAB327arabidopsis|gb165|AT1G72730818366588.4globlastp
4906LAB327canola|10v1|EG020438818466588.1globlastp
4907LAB327lolium|10v1|AU250857818566587.9globlastp
4908LAB327physcomitrella|10v1|AW477079818666587.9globlastp
4909LAB327physcomitrella|10v1|BG409334818766587.9globlastp
4910LAB327physcomitrella|gb157|AW477079818666587.9globlastp
4911LAB327physcomitrella|gb157|BG409334818766587.9globlastp
4912LAB327centaurea|gb166|EH763543818866587.7globlastp
4913LAB327physcomitrella|10v1|AJ225463818966587.7globlastp
4914LAB327lovegrass|gb167|DN483216819066587.7globlastp
4915LAB327physcomitrella|gb157|AW561235818966587.7globlastp
4916LAB327tomato|09v1|CRPSP014772819166587.4globlastp
4917LAB327castorbean|09v1|XM002524260819266587.4globlastp
4918LAB327castorbean|gb160|MDL29863M001062819266587.4globlastp
4919LAB327canola|gb161|CD826344819366587.2globlastp
4920LAB327b_rapa|gb162|EX037330819466587globlastp
4921LAB327spikemoss|gb165|FE431394819566586.7globlastp
4922LAB327spikemoss|gb165|FE439012819566586.7globlastp
4923LAB327cotton|gb164|AI055309819666586.4globlastp
4924LAB327catharanthus|gb166|EG558000819766586.2globlastp
4925LAB327canola|10v1|CD826344819866585.3globlastp
4926LAB327artemisia|10v1|EY063986819966585.2globlastp
4927LAB327spikemoss|gb165|FE428260820066585.2globlastp
4928LAB327bean|gb167|CA905225820166585globlastp
4929LAB327b_rapa|gb162|CV650421820266584.8globlastp
4930LAB327orobanche|10v1|SRR023189S0021240820366584.5glotblastn
4931LAB327pine|10v1|AI812354820466584.5globlastp
4932LAB327pine|gb157.2|AI812354820466584.5globlastp
4933LAB327pine|10v1|AW011098820566584.5globlastp
4934LAB327pine|gb157.2|AW011098820566584.5globlastp
4935LAB327radish|gb164|EV540574820666584.5globlastp
4936LAB327iceplant|gb164|BE034440820766584.3globlastp
4937LAB327spruce|gb162|CO242602820866584.3globlastp
4938LAB327mesostigma|gb166|DN254955820966584globlastp
4939LAB327peanut|gb171|CD038335821066584globlastp
4940LAB327spruce|gb162|CK444474821166584globlastp
4941LAB327spruce|gb162|CO216603821266583.8globlastp
4942LAB327chlamydomonas|gb162|AI670453821366583.5globlastp
4943LAB327pine|10v1|AA557094821466583.5globlastp
4944LAB327pine|gb157.2|AA557094821466583.5globlastp
4945LAB327volvox|gb162|AI670453821566582.5globlastp
4946LAB327dandelion|gb161|DY820664821666582.08glotblastn
4947LAB327b_rapa|gb162|CX267240821766581.2globlastp
4948LAB327switchgrass|gb167|FE601743821866581.1globlastp
4949LAB327ostreococcus|gb162|XM001418935821966580.6globlastp
4950LAB327pseudoroegneria|gb167|FF346170822066580.6globlastp
4951LAB327sugarcane|10v1|AA525682822166580.1globlastp
4952LAB329solanum_phureja|09v1|SPHAA076679822266681globlastp
4953LAB329potato|gb157.2|BG600407822266681globlastp
4954LAB335pseudoroegneria|gb167|FF348025822366798.18glotblastn
4955LAB335wheat|gb164|BE430022822466797.4globlastp
4956LAB335barley|gb157SOLEXA|AL502372822566797.1globlastp
4957LAB335barley|10v1|BE420777XX1822566797.1globlastp
4958LAB335brachypodium|09v1|DV477130822666786.2globlastp
4959LAB335rice|gb170|OS06G33710822766784.2globlastp
4960LAB335switchgrass|gb167|FE658978822866782.5globlastp
4961LAB335brachypodium|gb169|BE430022822966782.3globlastp
4962LAB335switchgrass|gb167|FE632114823066782globlastp
4963LAB335switchgrass|gb167|DN143077823166781.9globlastp
4964LAB335sorghum|09v1|SB10G020570823266781.7globlastp
4965LAB335sorghum|gb161.crp|AI977976823266781.7globlastp
4966LAB335maize|gb170|AI649774823366781.2globlastp
4967LAB335sorghum|09v1|SB04G009230823466780.8globlastp
4968LAB335sorghum|gb161.crp|AI987556823466780.8globlastp
4969LAB335sorghum|09v1|SB04G001510823566780.46glotblastn
4970LAB335sorghum|gb161.crp|BE918485823566780.46glotblastn
4971LAB336wheat|gb164|CK211137823666898.67glotblastn
4972LAB336barley|10v1|BE213707823766889.3globlastp
4973LAB336barley|gb157SOLEXA|BE213707823766889.3globlastp
4974LAB336barley|10v1|BE193842823866886.7globlastp
4975LAB336barley|gb157SOLEXA|BE193842823866886.7globlastp
4976LAB337wheat|gb164|BE605188823966998.5globlastp
4977LAB337wheat|gb164|CA711145824066997.1globlastp
4978LAB337barley|10v1|BI947303824166995.6globlastp
4979LAB337barley|gb157SOLEXA|BI947303824166995.6globlastp
4980LAB337pseudoroegneria|gb167|FF341367824266992.8globlastp
4981LAB339wheat|gb164|BM138484824367097.9globlastp
4982LAB339pseudoroegneria|gb167|FF344192824467095.4globlastp
4983LAB339barley|10v1|AV835301824567095.2globlastp
4984LAB339barley|gb157SOLEXA|AL501112824567095.2globlastp
4985LAB339oat|10v1|GR350608824667089.8globlastp
4986LAB340brachypodium|09v1|GT766551824767182.91glotblastn
4987LAB342lolium|10v1|ES699371824867286globlastp
4988LAB342barley|10v1|AW982420824967282globlastp
4989LAB342barley|gb157SOLEXA|AW982420825067280.86glotblastn
4990LAB343b_rapa|gb162|DY013496825167395.6globlastp
4991LAB343canola|gb161|CD831099825267394.4globlastp
4992LAB343radish|gb164|EV526960825367386.7globlastp
4993LAB343radish|gb164|EV546393825467385.7globlastp
4994LAB343canola|gb161|DY023342825567385.5globlastp
4995LAB343canola|10v1|EG019883825667385.1globlastp
4996LAB343canola|10v1|EE483904825767385.1globlastp
4997LAB343canola|gb161|EE483904825767385.1globlastp
4998LAB343radish|gb164|EV529074825867384.5globlastp
4999LAB343canola|10v1|DY023342825967384.34glotblastn
5000LAB343arabidopsis|gb165|AT3G07880826067384globlastp
5001LAB343radish|gb164|EX770997826167383.3globlastp
5002LAB343arabidopsis_lyrata|09v1|JGIAL009219826267383.1globlastp
5003LAB343radish|gb164|EW713645826367380.7globlastp
5004LAB344sugarcane|10v1|CA081767826467484.4globlastp
5005LAB344sugarcane|gb157.3|CA075762826567483.41glotblastn
5006LAB344sorghum|gb161.crp|BE917776826667481.4globlastp
5007LAB344sorghum|09v1|SB06G029650826667481.4globlastp
5008LAB344sugarcane|gb157.3|CA075840826767480.95glotblastn
5009LAB349soybean|gb168|BE824094826867989.3globlastp
5010LAB352barley|gb157SOLEXA|BF628371826968198.1globlastp
5011LAB352barley|10v1|BF628371826968198.1globlastp
5012LAB352leymus|gb166|EG375949827068197.5globlastp
5013LAB352brachypodium|09v1|DV478509827168180.7globlastp
5014LAB353barley|10v1|BM816694827268285.9globlastp
5015LAB353barley|gb157SOLEXA|BM816694827268285.9globlastp
5016LAB355barley|10v1|AV908964827368391.6globlastp
5017LAB355barley|gb157SOLEXA|AV908964827368391.6globlastp
5018LAB355wheat|gb164|BE499690827468384.7globlastp
5019LAB355rice|gb170|OS08G38780827568383.7globlastp
5020LAB355brachypodium|gb169|BE494994827668382.3globlastp
5021LAB355brachypodium|09v1|GFXAM072969X2827668382.3globlastp
5022LAB355sorghum|09v1|SB02G027870827768382.2globlastp
5023LAB355sorghum|gb161.crp|BF507008827768382.2globlastp
5024LAB355barley|gb157SOLEXA|BM100516827868381.8globlastp
5025LAB355maize|gb170|AI783410827968381.7globlastp
5026LAB355sorghum|09v1|SB07G028600828068381.6globlastp
5027LAB355maize|gb170|AI372324828168381.6globlastp
5028LAB355sorghum|gb161.crp|AI372324828068381.6globlastp
5029LAB367b_oleracea|gb161|DY025911828268497.2globlastp
5030LAB367thellungiella|gb167|BY818625828368495.8globlastp
5031LAB367arabidopsis_lyrata|09v1|JGIAL015133828468493.71glotblastn
5032LAB367arabidopsis|gb165|AT2G38880828468493.71glotblastn
5033LAB367radish|gb164|EV527174828568489.5globlastp
5034LAB367cleome_gynandra|10v1|SRR015532S0028391828668484.6globlastp
5035LAB381poplar|gb170|BI129814828768594.86glotblastn
5036LAB381cassava|gb164|CK645876828868590.8globlastp
5037LAB381castorbean|gb160|EG665628828968590.8glotblastn
5038LAB381castorbean|09v1|EG665628829068590.8globlastp
5039LAB381citrus|gb166|CB290512829168585.7globlastp
5040LAB381nasturtium|10v1|SRR032558S0015243829268585.1globlastp
5041LAB381cotton|gb164|AI728916829368581.1globlastp
5042LAB383soybean|gb168|BE821922829468695.9globlastp
5043LAB383medicago|09v1|AL387357829568685.1globlastp
5044LAB55rye|gb164|BF145456829669093.48glotblastn
5045LAB55millet|09v1|EVO454PM000227829769086.96glotblastn
5046LAB55wheat|gb164|CA484197829869084.8globlastp
5047LAB55fescue|gb161|DT713184829969083.7glotblastn
5048LAB55wheat|gb164|CK208158830069083.7glotblastn
5049LAB72papaya|gb165|EX239264830169482.35glotblastn
5050LAB72citrus|gb166|CK740017830269480.95glotblastn
5051LAB72castorbean|09v1|XM002510905830369480.88glotblastn
5052LAB72castorbean|gb160|MDL30147M014220830369480.88glotblastn
5053LAB72cassava|gb164|DV447303830469480.51glotblastn
5054LAB120pepper|gb171|CA522804830570086.3globlastp
5055LAB120solanum_phureja|09v1|SPHAK320985830670081.23glotblastn
5056LAB120nasturtium|10v1|SRR032558S0243931830770080glotblastn
5057LAB221sorghum|09v1|SB02G038960830871186.7globlastp
5058LAB221sorghum|gb161.crp|SBGWP022909830871186.7globlastp
5059LAB221maize|gb170|AW231650830971185.1globlastp
5060LAB293maize|gb170|AI629471831071589.2globlastp
5061LAB293rice|gb170|OS08G33740831171586.7glotblastn
5062LAB293brachypodium|09v1|GT829942831271585.22glotblastn
5063LAB293brachypodium|gb169|BF257470831371584.1globlastp
5064LAB293switchgrass|gb167|FE656679831471583.5globlastp
5065LAB293wheat|gb164|CA627636831571582.5globlastp
5066LAB300sorghum|09v1|SB05G002450831671995.7glotblastn
5067LAB300sorghum|gb161.crp|BF421813831671995.7glotblastn
5068LAB300maize|gb170|AW120452831771992.47glotblastn
5069LAB300sugarcane|10v1|BU103524831871992.47glotblastn
5070LAB300sugarcane|gb157.3|BU103524831971992.47glotblastn
5071LAB300maize|gb170|BQ035158832071990.32glotblastn
5072LAB300switchgrass|gb167|FE618131832171987.1glotblastn
5073LAB300millet|09v1|EVO454PM051167832271986.02glotblastn
5074LAB300rice|gb170|OS12G04290832371986.02glotblastn
5075LAB300switchgrass|gb167|DN141039832471986.02glotblastn
5076LAB300rice|gb170|OS11G04520832571984.95glotblastn
5077LAB300oat|10v1|GR349530832671982.8glotblastn
5078LAB300brachypodium|09v1|GT778679832771980.65glotblastn
5079LAB300brachypodium|gb169|BE496864832871980.65glotblastn
5080LAB300wheat|gb164|BE416393832971980.65glotblastn
5081LAB311cichorium|gb171|DT211930833072183.71glotblastn
5082LAB311dandelion|gb161|DY828396833172181.47glotblastn
5083LAB316petunia|gb171|CV292888833272387.61glotblastn
5084LAB316triphysaria|10v1|DR175232833372383glotblastn
5085LAB316grape|gb160|CF213593833472382.66glotblastn
5086LAB316cotton|gb164|AI726514833572382.08glotblastn
5087LAB316coffea|10v1|DV665545833672381.84glotblastn
5088LAB316bean|gb167|CA910091833772381.79glotblastn
5089LAB316castorbean|09v1|XM002530954833872381.79glotblastn
5090LAB316castorbean|gb160|MDL29847M000246833872381.79glotblastn
5091LAB316soybean|gb168|BI969411833972381.5glotblastn
5092LAB316soybean|gb168|CA910091834072381.5glotblastn
5093LAB316tragopogon|10v1|SRR020205S0000615834172381.21glotblastn
5094LAB316chestnut|gb170|SRR006295S0002034834272381.21glotblastn
5095LAB316citrus|gb166|CF507005834372381.21glotblastn
5096LAB316cucumber|09v1|DN910234834472380.98glotblastn
5097LAB316coffea|gb157.2|DV665545834572380.98glotblastn
5098LAB316lotus|09v1|BP037753834672380.92glotblastn
5099LAB316cichorium|gb171|EH673760834772380.92glotblastn
5100LAB316sunflower|gb162|DY925338834872380.92glotblastn
5101LAB316sunflower|gb162|DY932981834972380.92glotblastn
5102LAB316artemisia|10v1|EY089946835072380.64glotblastn
5103LAB316artemisia|gb164|EY089946835172380.35glotblastn
5104LAB323potato|gb157.2|AW907080835272589.24glotblastn
5105LAB326pepper|gb171|CA514118835372692.28glotblastn
5106LAB326solanum_phureja|09v1|SPHAI776997835472691.95glotblastn
5107LAB326potato|10v1|BG886798835572690.9globlastp
5108LAB326petunia|gb171|CV298273835672689.04glotblastn
5109LAB326artemisia|gb164|EY085224835772681.46glotblastn
5110LAB326artemisia|10v1|SRR019254S0002302835872680.74glotblastn
5111LAB326lettuce|10v1|DW065639835972680.5globlastp
5112LAB327poppy|gb166|FG606884836072799.01glotblastn
5113LAB327canola|10v1|CD823763836172798.02glotblastn
5114LAB327eggplant|10v1|FS002516836272798.02glotblastn
5115LAB327eggplant|10v1|FS018078836372798.02glotblastn
5116LAB327sorghum|09v1|SLXL50010512D1836472798.02glotblastn
5117LAB327tomato|09v1|AI484526836572798.02glotblastn
5118LAB327tomato|09v1|BQ118912836672798.02glotblastn
5119LAB327b_juncea|gb164|EVGN01382831710219836772798.02glotblastn
5120LAB327b_oleracea|gb161|AM386836836872798.02glotblastn
5121LAB327canola|gb161|DY002101836972798.02glotblastn
5122LAB327canola|gb161|EE413610837072798.02glotblastn
5123LAB327canola|gb161|EE440622837172798.02glotblastn
5124LAB327canola|gb161|EE456605837272798.02glotblastn
5125LAB327canola|gb161|EE460641837372798.02glotblastn
5126LAB327cassava|09v1|CK644469837472798.02glotblastn
5127LAB327cassava|gb164|CK644469837572798.02glotblastn
5128LAB327cotton|gb164|BF271275837672798.02glotblastn
5129LAB327petunia|gb171|CV299604837772798.02glotblastn
5130LAB327potato|gb157.2|CK270482837872798.02glotblastn
5131LAB327radish|gb164|EV527546837972798.02glotblastn
5132LAB327radish|gb164|EX888568838072798.02glotblastn
5133LAB327walnuts|gb166|CV195688838172798.02glotblastn
5134LAB327b_rapa|gb162|AB012653838272798globlastp
5135LAB327nicotiana_benthamiana|gb162|CN743193838372798globlastp
5136LAB327cleome_spinosa|10v1|SRR015531S0000653838472797.03glotblastn
5137LAB327cucumber|09v1|DN909393838572797.03glotblastn
5138LAB327eggplant|10v1|FS018763838672797.03glotblastn
5139LAB327eschscholzia|10v1|SRR014116S0005541838772797.03glotblastn
5140LAB327ipomoea_nil|10v1|BJ567233838872797.03glotblastn
5140LAB327ipomoea|gb157.2|BJ567233838872797.03glotblastn
5141LAB327rhizophora|10v1|SRR005792S0001643838972797.03glotblastn
5142LAB327rhizophora|10v1|SRR005793S0006109839072797.03glotblastn
5143LAB327solanum_phureja|09v1|SPHBQ118912839172797.03glotblastn
5144LAB327solanum_phureja|09v1|SPHCV492300839272797.03glotblastn
5145LAB327tomato|09v1|CV492300839372797.03glotblastn
5146LAB327b_juncea|gb164|EVGN00146809031110839472797.03glotblastn
5147LAB327banana|gb167|FF562462839572797.03glotblastn
5148LAB327barley|gb157SOLEXA|BJ449692839672797.03glotblastn
5149LAB327eucalyptus|gb166|CU396200839772797.03glotblastn
5150LAB327ginger|gb164|DY353207839872797.03glotblastn
5151LAB327leymus|gb166|CD808996839972797.03glotblastn
5152LAB327maize|gb170|CD441688840072797.03glotblastn
5153LAB327oil_palm|gb166|AY040227840172797.03glotblastn
5154LAB327pineapple|10v1|DT337548840272797.03glotblastn
5155LAB327poplar|gb170|AI163175840372797.03glotblastn
5156LAB327potato|gb157.2|CK267835840472797.03glotblastn
5157LAB327pseudoroegneria|gb167|FF343365840572797.03glotblastn
5158LAB327radish|gb164|EV536307840672797.03glotblastn
5159LAB327sorghum|gb161.crp|SBGWP053010840772797.03glotblastn
5160LAB327tobacco|gb162|DW001412840872797.03glotblastn
5161LAB327wheat|gb164|BE412017840972797.03glotblastn
5162LAB327wheat|gb164|BF293084841072797.03glotblastn
5163LAB327wheat|gb164|CD491106841172797.03glotblastn
5164LAB327banana|gb167|FL665731841272797globlastp
5165LAB327arabidopsis_lyrata|09v1|CRPALE014458841372796.04glotblastn
5166LAB327chickpea|09v2|GR399685841472796.04glotblastn
5167LAB327cleome_spinosa|10v1|SRR015531S0018590841572796.04glotblastn
5168LAB327cleome_spinosa|10v1|SRR015531S0034249841672796.04glotblastn
5169LAB327ipomoea_nil|10v1|BJ566333841772796.04glotblastn
5169LAB327ipomoea|gb157.2|BJ566333841772796.04glotblastn
5170LAB327lettuce|10v1|DW070872841872796.04glotblastn
5171LAB327millet|09v1|EVO454PM002075841972796.04glotblastn
5172LAB327pigeonpea|gb171|GR471472842072796.04glotblastn
5173LAB327pigeonpea|gb171|GR473022842172796.04glotblastn
5174LAB327salvia|10v1|CV162812842272796.04glotblastn
5175LAB327salvia|10v1|CV163214842372796.04glotblastn
5176LAB327solanum_phureja|09v1|SPHCRPSP044068842472796.04glotblastn
5177LAB327banana|gb167|FL664451842572796.04glotblastn
5178LAB327basilicum|10v1|DY325098842672796.04glotblastn
5179LAB327basilicum|gb157.3|DY325098842672796.04glotblastn
5180LAB327centaurea|gb166|EL931474842772796.04glotblastn
5181LAB327cichorium|gb171|EH685996842872796.04glotblastn
5182LAB327melon|gb165|AM713503842972796.04glotblastn
5183LAB327peanut|gb171|EG030107843072796.04glotblastn
5184LAB327sugarcane|gb157.3|CA073323843172796.04glotblastn
5185LAB327switchgrass|gb167|FE605806843272796.04glotblastn
5186LAB327zamia|gb166|CB095911843372796.04glotblastn
5187LAB327eschscholzia|10v1|SRR014116S0006563843472796globlastp
5188LAB327basilicum|gb157.3|DY326229843572796globlastp
5188LAB327basilicum|10v1|DY326229848672791.5globlastp
5189LAB327brachypodium|09v1|CRPBD012820843672795.05glotblastn
5190LAB327chickpea|09v2|GR394209843772795.05glotblastn
5191LAB327gerbera|09v1|AJ753152843872795.05glotblastn
5192LAB327lotus|09v1|BG662143843972795.05glotblastn
5193LAB327nasturtium|10v1|SRR032558S0020815844072795.05glotblastn
5194LAB327oat|10v1|GR349416844172795.05glotblastn
5195LAB327orobanche|10v1|SRR023189S0012423844272795.05glotblastn
5196LAB327pea|09v1|FG529035844372795.05glotblastn
5197LAB327physcomitrella|10v1|PHPCRP010667844472795.05glotblastn
5198LAB327pigeonpea|gb171|GR466365844572795.05glotblastn
5199LAB327bean|gb167|CA898102844672795.05glotblastn
5200LAB327clover|gb162|BB907933844772795.05glotblastn
5201LAB327cynara|gb167|GE599288844872795.05glotblastn
5202LAB327onion|gb162|CF439850844972795.05glotblastn
5203LAB327pineapple|10v1|DT335927845072795.05glotblastn
5204LAB327pineapple|gb157.2|DT335927845172795.05glotblastn
5205LAB327sunflower|gb162|BQ914361845272795.05glotblastn
5206LAB327basilicum|10v1|DY341441845372794.06glotblastn
5207LAB327eggplant|10v1|FS002029845472794.06glotblastn
5208LAB327ipomoea_batatas|10v1|CO500259845572794.06glotblastn
5209LAB327medicago|09v1|AL370119845672794.06glotblastn
5210LAB327physcomitrella|10v1|PHPCRP016239845772794.06glotblastn
5211LAB327tragopogon|10v1|SRR020205S0006730845872794.06glotblastn
5212LAB327amborella|gb166|CO999518845972794.06glotblastn
5213LAB327basilicum|gb157.3|DY341441845372794.06glotblastn
5214LAB327beet|gb162|BF011040846072794.06glotblastn
5215LAB327canola|10v1|EV041917846172794.06glotblastn
5216LAB327canola|gb161|EV041917846272794.06glotblastn
5217LAB327cichorium|gb171|EH679514846372794.06glotblastn
5218LAB327dandelion|gb161|DY832440846472794.06glotblastn
5219LAB327petunia|gb171|CV297073846572794.06glotblastn
5220LAB327sunflower|gb162|EL421491846672794.06glotblastn
5221LAB327triphysaria|gb164|DR176592846772794.06glotblastn
5222LAB327walnuts|gb166|CV195670846872794.06glotblastn
5223LAB327tomato|gb164|BG735245846972793.1globlastp
5224LAB327solanum_phureja|09v1|SPHCRPSP014772847072793.07glotblastn
5225LAB327antirrhinum|gb166|AJ789472847172793.07glotblastn
5226LAB327clover|gb162|BB909848847272793.07glotblastn
5227LAB327cynara|gb167|GE598198847372793.07glotblastn
5228LAB327fern|gb171|DK952436847472793.07glotblastn
5229LAB327radish|gb164|EV545321847572793.07glotblastn
5230LAB327radish|gb164|EW731903847672793.07glotblastn
5231LAB327thellungiella|gb167|BY800754847772792.5globlastp
5232LAB327avocado|10v1|CO996828847872792.08glotblastn
5233LAB327medicago|09v1|LLAL381370847972792.08glotblastn
5234LAB327solanum_phureja|09v1|SPHCRPSP026105848072792.08glotblastn
5235LAB327tomato|09v1|CRPSP026105848072792.08glotblastn
5236LAB327brachypodium|09v1|DV469797848172792.08glotblastn
5237LAB327brachypodium|gb169|BE400316848172792.08glotblastn
5238LAB327lettuce|10v1|DW047925848272792.08glotblastn
5239LAB327nuphar|gb166|CD474327848372792.08glotblastn
5240LAB327triphysaria|gb164|EY006504848472792.08glotblastn
5241LAB327zinnia|gb171|AU305761848572792.08glotblastn
5242LAB327ginseng|10v1|GR871242848772791.1globlastp
5243LAB327chickpea|09v2|GR915554848872791.09glotblastn
5244LAB327gerbera|09v1|AJ754459848972791.09glotblastn
5245LAB327b_oleracea|gb161|ES940987849072791.09glotblastn
5246LAB327jatropha|09v1|FM891968849172790.1globlastp
5247LAB327canola|gb161|CD836727849272790.1glotblastn
5248LAB327cassava|gb164|DB943271849372790.1globlastp
5249LAB327mesostigma|gb166|EC727138849472790.1glotblastn
5250LAB327antirrhinum|gb166|AJ559628849572789.7globlastp
5251LAB327arabidopsis_lyrata|09v1|CRPALE015090849672789.11glotblastn
5252LAB327soybean|gb168|SB2GWP031146849772788.12glotblastn
5253LAB327rhizophora|10v1|SRR005793S0029492849872787.7globlastp
5254LAB327cacao|gb167|CU583493849972787.13glotblastn
5255LAB327senecio|gb170|SRR006594S0009563850072787.13glotblastn
5256LAB327soybean|gb168|ES612478850172787.13glotblastn
5257LAB327salvia|10v1|SRR014553S0018208850272786.8globlastp
5258LAB327kiwi|gb166|FG403299850372786.6globlastp
5259LAB327lettuce|gb157.2|DW044074850472786.4globlastp
5260LAB327lettuce|10v1|DW044074850472786.4globlastp
5261LAB327castorbean|09v1|CRPRC009201850572786.14glotblastn
5262LAB327fern|gb171|DK945838850672786.14glotblastn
5263LAB327cryptomeria|gb166|AU066365850772785.7globlastp
5264LAB327lettuce|10v1|BQ847691850872785.5globlastp
5265LAB327fescue|gb161|DT674428850972785.2globlastp
5266LAB327fescue|gb161|DT704683850972785.2globlastp
5267LAB327ginger|gb164|DY352710851072785.2globlastp
5268LAB327ginger|gb164|DY367029851172785.1globlastp
5269LAB327lettuce|gb157.2|BQ846927851272784.8globlastp
5270LAB327chickpea|09v2|FL512356851372784.3globlastp
5271LAB327beet|gb162|EG549666851472784.3globlastp
5272LAB327castorbean|09v1|XM002516046851572784.16glotblastn
5273LAB327castorbean|gb160|MDL29739M003574851572784.16glotblastn
5274LAB327cryptomeria|gb166|BP175684851672783.5globlastp
5275LAB327lotus|gb157.2|BP036168851772783.5globlastp
5276LAB327triphysaria|10v1|EY154847851872783.17glotblastn
5277LAB327triphysaria|gb164|EY154847851972783.17glotblastn
5278LAB327wheat|gb164|BQ242360852072783.17glotblastn
5279LAB327ipomoea_batatas|10v1|DV038154852172782.6globlastp
5280LAB327ginger|gb164|DY357739852272782.6globlastp
5281LAB327potato|gb157.2|EG016197852372782.6globlastp
5281LAB327potato|10v1|EG016197852772781.9globlastp
5282LAB327eucalyptus|gb166|CB967721852472782.2globlastp
5283LAB327thellungiella|gb167|BY825969852572782.2globlastp
5284LAB327pea|09v1|FG534024852672782.1globlastp
5285LAB327maize|gb170|LLCD985621852872781.19glotblastn
5286LAB327oat|10v1|SRR020744S0068207852972780.6globlastp
5287LAB327tragopogon|10v1|SRR020205S0002992853072780.2glotblastn
5288LAB327b_juncea|gb164|EVGN15228424711949853172780.2globlastp
5289LAB327sunflower|gb162|EL434559853272780.2glotblastn
5290LAB327canola|10v1|CD836727853372780globlastp
5291LAB327ipomoea|gb157.2|BJ569764853472780globlastp
5292LAB348maize|gb170|EB407478853572890.7globlastp
5293LAB348maize|gb170|DR814793853672887globlastp
5294LAB381poplar|10v1|BI129814853773093.2globlastp
5295LAB381cassava|09v1|CK645876853873091.3globlastp
5296LAB381cucumber|09v1|EB715836853973081.1globlastp
5297LAB65barley|10v1|BG368928854073581.73glotblastn
5298LAB73cassava|09v1|CK649713854173681.7globlastp
5299LAB73cacao|gb167|CU476966854273681.1globlastp
5300LAB73cotton|gb164|AI725704854373680.5globlastp
5301LAB73poplar|10v1|BU861781854473680.2globlastp
5302LAB73poplar|10v1|CV230194854573680.18glotblastn
5303LAB108maize|gb170|BM661010854673894.28glotblastn
5304LAB108rice|gb170|OS12G12260854773884.7globlastp
5305LAB108brachypodium|09v1|DV482604854873883.7globlastp
5306LAB108brachypodium|gb169|BF474193854873883.7globlastp
5307LAB108barley|10v1|BG300035854973881.9globlastp
5308LAB123tomato|09v1|BG889563855073994.1globlastp
5309LAB125solanum_phureja|09v1|SPHBG124210855174188.8globlastp
5310LAB126solanum_phureja|09v1|SPHBG126148855274296.5globlastp
5311LAB138brachypodium|gb169|BE426494855374486.9globlastp
5312LAB138brachypodium|09v1|SRR031795S0016784855474486.6globlastp
5313LAB138rice|gb170|OS09G35680855574483.4globlastp
5314LAB157maize|gb170|AW424421855674692.5globlastp
5315LAB157rice|gb170|OS11G31570855774685.4globlastp
5316LAB157brachypodium|09v1|SRR031797S0018936855874684.5globlastp
5317LAB157wheat|gb164|CJ625105855974681.4globlastp
5318LAB164switchgrass|gb167|FL925553856074892.9globlastp
5319LAB164leymus|gb166|EG389112856174890.6globlastp
5320LAB164rice|gb170|OS08G02070856274890.5globlastp
5321LAB164maize|gb170|EG075778856374890.2globlastp
5322LAB164maize|gb170|BM379409856474889globlastp
5323LAB164wheat|gb164|BE445505856574888.8globlastp
5324LAB164brachypodium|09v1|SRR031797S0001217856674884.5globlastp
5325LAB190arabidopsis_lyrata|09v1|JGIAL027834856775389.3globlastp
5326LAB206wheat|gb164|BE430173856875491.6globlastp
5327LAB206wheat|gb164|BE591206856875491.6globlastp
5328LAB206wheat|gb164|BE493558856975490.9globlastp
5329LAB206wheat|gb164|BG313801857075490.9globlastp
5330LAB206oat|10v1|GR360139857175487.7globlastp
5331LAB207barley|gb157SOLEXA|AJ470859857275587.2globlastp
5332LAB207barley|gb157SOLEXA|BI947011857375587.2globlastp
5333LAB207barley|10v1|BI947011857375587.2globlastp
5334LAB207wheat|gb164|BE399070857475583globlastp
5335LAB207wheat|gb164|BG312816857575582.22glotblastn
5336LAB207wheat|gb164|BE425222857675581.67glotblastn
5337LAB207wheat|gb164|BE420315857775581.46glotblastn
5338LAB207wheat|gb164|BE425435857875580.66glotblastn
5339LAB207wheat|gb164|CD937530857975580.6globlastp
5340LAB207wheat|gb164|BE426035858075580.3globlastp
5341LAB207wheat|gb164|BE492138858175580.11glotblastn
5342LAB210leymus|gb166|EG389322858275682.6glotblastn
5343LAB210wheat|gb164|BE403306858375682.6globlastp
5344LAB210wheat|gb164|BM134945858475682.4globlastp
5345LAB210wheat|gb164|CA596301858575682.1globlastp
5346LAB210wheat|gb164|BE499093858675682globlastp
5347LAB210barley|10v1|BF621975858775680.5globlastp
5348LAB210barley|gb157SOLEXA|BF621975858775680.5globlastp
5349LAB210brachypodium|gb169|BE403306858875680.3globlastp
5350LAB212rice|gb170|OS06G46900858975783.8globlastp
5351LAB213wheat|gb164|BF473141859075893.4globlastp
5352LAB213wheat|gb164|BF474599859175893.4globlastp
5353LAB213wheat|gb164|BQ743375859275893.4globlastp
5354LAB213leymus|gb166|EG374734859375892.1globlastp
5355LAB213oat|10v1|GO594668859475882.6globlastp
5356LAB213wheat|gb164|BE426266859575882.4globlastp
5357LAB213brachypodium|09v1|DV469105859675881globlastp
5358LAB213brachypodium|gb169|BE426266859675881globlastp
5359LAB222sorghum|09v1|SB04G034760859776183.6globlastp
5360LAB271sugarcane|10v1|BU103128859876395.9globlastp
5361LAB271sugarcane|gb157.3|BU103128859876395.9globlastp
5362LAB271maize|gb170|AI649483859976394.6globlastp
5363LAB271rice|gb170|OS01G66120860076384.2globlastp
5364LAB271wheat|gb164|BE414854860176383globlastp
5365LAB271wheat|gb164|BE414877860276382.7globlastp
5366LAB271brachypodium|09v1|DV475081860376382.5globlastp
5367LAB271brachypodium|gb169|BE414854860376382.5globlastp
5368LAB271oat|10v1|GR323587860476381.8globlastp
5369LAB271leymus|gb166|EG379378860576381.4globlastp
5370LAB271barley|10v1|BF625713860676380.6globlastp
5371LAB271barley|gb157SOLEXA|AL507776860676380.6globlastp
5372LAB294maize|gb170|AW267317860776588.9globlastp
5373LAB295maize|gb170|AI987279860876690.99glotblastn
5374LAB297maize|gb170|AI939833860976882.9globlastp
5375LAB298maize|gb170|BM267212861076991.2globlastp
5376LAB299sugarcane|10v1|CA067401861177095.8globlastp
5377LAB299sugarcane|gb157.3|CA067401861277095.8globlastp
5378LAB306soybean|gb168|BU549205861377286.3globlastp
5379LAB306cowpea|gb166|FF387950861477280.2globlastp
5380LAB316solanum_phureja|09v1|SPHAI773156861577595.2globlastp
5381LAB316tomato|09v1|BG125377861677586.6globlastp
5382LAB316tomato|gb164|BG125377861677586.6globlastp
5383LAB316tobacco|gb162|AJ718731861777586.1globlastp
5384LAB316potato|gb157.2|BI405340861877585.9globlastp
5385LAB316potato|10v1|BF459737861977585.7globlastp
5386LAB316solanum_phureja|09v1|SPHBG125377862077585globlastp
5387LAB316triphysaria|gb164|DR175232862177581.7globlastp
5388LAB316triphysaria|10v1|DR171145862277581.5globlastp
5389LAB316poplar|10v1|AI166150862377581.25glotblastn
5390LAB316poplar|gb170|AI166150862377581.25glotblastn
5391LAB316cassava|09v1|CK649108862477580.9globlastp
5392LAB316orobanche|10v1|SRR023189S0001256862577580.8globlastp
5393LAB316grape|gb160|CB342294862677580.5globlastp
5394LAB316lotus|09v1|GO026464862777580.3globlastp
5395LAB316lettuce|10v1|DW047539862877580.1globlastp
5396LAB316lettuce|gb157.2|DW047539862877580.1globlastp
5397LAB318solanum_phureja|09v1|SPHAI899075862977795.1globlastp
5398LAB318potato|10v1|BG596620863077794.9globlastp
5399LAB326potato|gb157.2|BG350058863177897.5globlastp
5400LAB326potato|10v1|BG350058863177897.5globlastp
5401LAB326tomato|09v1|BG129901863277897.2globlastp
5402LAB326potato|gb157.2|BE920131863377896.4globlastp
5403LAB326solanum_phureja|09v1|SPHBG642701863477896.3globlastp
5404LAB326potato|10v1|BG887005863577895.72glotblastn
5405LAB326solanum_phureja|09v1|SPHBG123720863677895.71glotblastn
5406LAB326potato|gb157.2|BF053757863777895.31glotblastn
5407LAB326potato|10v1|BF153565863877894.7globlastp
5408LAB326potato|gb157.2|BF153565863877894.7globlastp
5409LAB326potato|gb157.2|BE922713863977894.64glotblastn
5410LAB326solanum_phureja|09v1|SPHBG626585864077894.3globlastp
5411LAB326pepper|gb171|AF081215864177893.6globlastp
5412LAB326tobacco|gb162|GFXAB008200X1864277893.1globlastp
5413LAB326solanum_phureja|09v1|SPHGFXX63103X1864377893.08glotblastn
5414LAB326solanum_phureja|09v1|SPHAW031670864477893.07glotblastn
5415LAB326tobacco|gb162|TOBPAL1864577890.2globlastp
5416LAB326tobacco|gb162|X78269864677889.9globlastp
5417LAB326potato|10v1|BG095888864777889.6globlastp
5418LAB326potato|gb157.2|BG095888864777889.6globlastp
5419LAB326solanum_phureja|09v1|SPHBG626799864877889.1globlastp
5420LAB326solanum_phureja|09v1|SPHCV498380864977888.5globlastp
5421LAB326ipomoea_nil|10v1|GFXAF325496X1865077888.4globlastp
5422LAB326tomato|09v1|BG626799865177888.4globlastp
5423LAB326ipomoea|gb157.2|IPBPALA865277886.8globlastp
5424LAB326catharanthus|gb166|AB042520865377886.5globlastp
5425LAB326castorbean|09v1|EE260559865477885.2globlastp
5426LAB326castorbean|gb160|EE260559865477885.2globlastp
5427LAB326sunflower|gb162|CD846484865577885.2globlastp
5428LAB326ipomoea_batatas|10v1|IPBPAL865677885globlastp
5428LAB326ipomoea|gb157.2|IPBPAL865677885globlastp
5429LAB326ipomoea_batatas|10v1|IPBPALA865777884.7globlastp
5430LAB326cotton|gb164|BF276718865877884.7globlastp
5431LAB326cynara|gb167|GFXAM418586X1865977884.7globlastp
5432LAB326artemisia|10v1|EY085223866077884.6globlastp
5433LAB326cassava|09v1|AF383150866177884.6globlastp
5434LAB326cassava|gb164|AF383150866277884.5globlastp
5435LAB326basilicum|10v1|DY321950866377884.3globlastp
5436LAB326basilicum|gb157.3|DY322602866377884.3globlastp
5437LAB326lettuce|gb157.2|CV700169866477884.21glotblastn
5438LAB326artemisia|10v1|EY060660866577884.2globlastp
5439LAB326basilicum|10v1|DY321580866677884.2globlastp
5440LAB326lettuce|10v1|CV700169866777884.1globlastp
5441LAB326jatropha|09v1|GFXDQ883805X1866877884globlastp
5442LAB326poplar|10v1|AI166477866977883.9globlastp
5443LAB326cotton|gb164|BE051903867077883.9globlastp
5444LAB326beet|gb162|BI543368867177883.6globlastp
5445LAB326citrus|gb166|CLU43338867277883.6globlastp
5446LAB326salvia|10v1|CV165552867377883.6globlastp
5447LAB326aquilegia|10v1|DR912258867477883.6globlastp
5448LAB326monkeyflower|10v1|GO944801867577883.54glotblastn
5449LAB326castorbean|09v1|EG660464867677883.5globlastp
5450LAB326grape|gb160|BQ793161867777883.5globlastp
5451LAB326grape|gb160|X75967867877883.5globlastp
5452LAB326apple|gb171|X68126867977883.4globlastp
5453LAB326poplar|10v1|POPPALGA868077883.4globlastp
5454LAB326citrus|gb166|CF832012868177883.3globlastp
5455LAB326prunus|gb167|AF036948868277883.3globlastp
5456LAB326cacao|gb167|CF974594868377883.2globlastp
5457LAB326cynara|gb167|GFXAM418560X1868477883.2globlastp
5458LAB326medicago|09v1|AI737513868577883.2globlastp
5459LAB326grape|gb160|BQ796207868677883.1globlastp
5460LAB326citrus|gb166|BE208887868777882.8globlastp
5461LAB326cotton|gb164|BG443220868877882.8globlastp
5462LAB326soybean|gb168|PHVPAL868977882.8globlastp
5463LAB326cassava|09v1|DB927918869077882.7globlastp
5464LAB326nasturtium|10v1|GH164221869177882.7globlastp
5465LAB326poplar|10v1|AI166713869277882.7globlastp
5466LAB326tea|10v1|AY694188869377882.7globlastp
5467LAB326cassava|09v1|AY036011869477882.6globlastp
5468LAB326soybean|gb168|BG835821869577882.5globlastp
5469LAB326monkeyflower|10v1|GO944409869677882.4globlastp
5470LAB326clover|gb162|AB236800869777882.3globlastp
5471LAB326cassava|09v1|JGICASSAVA14518M1869877882.2globlastp
5472LAB326poplar|10v1|BI131326869977882.2globlastp
5473LAB326lotus|09v1|AW720528870077882.1globlastp
5474LAB326petunia|gb171|CV294118870177882globlastp
5475LAB326lotus|09v1|CB826853870277881.9globlastp
5476LAB326pea|09v1|CD858906870377881.7globlastp
5477LAB326soybean|gb168|AA660545870477881.7globlastp
5478LAB326soybean|gb168|S46988870577881.6globlastp
5479LAB326canola|10v1|AA960723870677881.5globlastp
5480LAB326nasturtium|10v1|SRR032558S0014671870777881.5globlastp
5481LAB326bean|gb167|CA914521870877881.44glotblastn
5482LAB326chestnut|gb170|SRR006295S0000016870977881.4globlastp
5483LAB326triphysaria|10v1|EX991935871077881.28glotblastn
5484LAB326coffea|10v1|AF218453871177881.2globlastp
5485LAB326nasturtium|10v1|GH168296871277881.2globlastp
5486LAB326tomato|09v1|BG132153871377881.1globlastp
5487LAB326canola|10v1|CD828744871477881globlastp
5488LAB326cucumber|09v1|AF529240871577881globlastp
5489LAB326pea|09v1|GFXPEAPAL2X1871677881globlastp
5490LAB326cucumber|09v1|AM715693871777880.9globlastp
5491LAB326lotus|09v1|BP085550871877880.9globlastp
5492LAB326oak|gb170|AY443341871977880.9globlastp
5493LAB326solanum_phureja|09v1|SPHBG132153872077880.9globlastp
5494LAB326soybean|gb168|BE352696872177880.9globlastp
5495LAB326castorbean|09v1|XM002529368872277880.8globlastp
5496LAB326clover|gb162|DQ073808872377880.8globlastp
5497LAB326cucumber|09v1|AI563248872477880.8globlastp
5498LAB326arabidopsis|gb165|AT2G37040872577880.6globlastp
5499LAB326grape|gb160|CB975210872677880.6globlastp
5500LAB326cucumber|09v1|AM715202872777880.58glotblastn
5501LAB326arabidopsis_lyrata|09v1|JGIAL014871872877880.5globlastp
5502LAB326citrus|gb166|CF417508872977880.5globlastp
5503LAB326lotus|09v1|AB283035873077880.44glotblastn
5504LAB326canola|10v1|GFXAY795077X1873177880.2globlastp
5505LAB326canola|10v1|CD829602873277880.17glotblastn
5506LAB326cotton|gb164|AA659954873377880.17glotblastn
5507LAB326tea|10v1|FE942976873477880.17glotblastn
5508LAB339brachypodium|09v1|DV469561873577981.3globlastp
5509LAB383bean|gb167|FE898132873678286.21glotblastn
Table 44: Provided are the homologous polypeptides (polypep.) and polynucleotides (polynucl.) of the genes for increasing abiotic stress tolerance, yield, growth rate, vigor, oil content, biomass, nitrogen use efficiency, water use efficiency and fertilizer use efficiency genes of a plant which are listed in Table 53 above. Homology was calculated as % of identity over the aligned sequences. The query sequences were polynucleotide and polypeptides depicted in Table 43 above, and the subject sequences are protein and polynucleotide sequences identified in the database based on greater than 80% global identity to the query nucleotide and/or polypeptide sequences. Hom. = Homology; Glob. = Global; Algor. = Algorithm.

The output of the functional genomics approach described herein is a set of genes highly predicted to improve ABST, yield and/or other agronomic important traits such as growth rate, vigor, biomass, growth rate, oil content, nitrogen use efficiency, water use efficiency and fertilizer use efficiency of a plant by increasing their expression. Although each gene is predicted to have its own impact, modifying the mode of expression of more than one gene is expected to provide an additive or synergistic effect on the plant yield and/or other agronomic important yields performance. Altering the expression of each gene described here alone or set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.

To validate their role in improving ABST, yield, growth rate, biomass, vigor, oil content, WUE, NUE and/or FUE selected genes were over-expressed in plants, as follows.

Cloning Strategy

Selected genes from those presented in Examples 4 and 5 hereinabove are cloned into binary vectors for the generation of transgenic plants. For cloning, the full-length open reading frames (ORFs) were identified. EST clusters and in some cases mRNA sequences were analyzed to identify the entire open reading frame by comparing the results of several translation algorithms to known proteins from other plant species.

In order to clone the full-length cDNAs, reverse transcription (RT) followed by polymerase chain reaction (PCR; RT-PCR) is performed on total RNA extracted from leaves, roots or other plant tissues, growing under normal conditions. Total RNA extraction, production of cDNA and PCR amplification is performed using standard protocols described elsewhere (Sambrook J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.) which are well known to those skilled in the art. PCR products are purified using PCR purification kit (Qiagen)

Usually, 2 sets of primers are prepared for the amplification of each gene, via nested PCR (if required). Both sets of primers are used for amplification on cDNA. In case no product is obtained, a nested PCR reaction is performed. Nested PCR is performed by amplification of the gene using external primers and then using the produced PCR product as a template for a second PCR reaction, where the internal set of primers are used. Alternatively, one or two of the internal primers are used for gene amplification, both in the first and the second PCR reactions (meaning only 2-3 primers were designed for a gene). To facilitate further cloning of the cDNAs, an 8-12 bp extension is added to the 5′ of each internal primer. The primer extension includes an endonuclease restriction site. The restriction sites are selected using two parameters: (a) the restriction site does not exist in the cDNA sequence; and (b) the restriction sites in the forward and reverse primers are designed such that the digested cDNA is inserted in the sense direction into the binary vector utilized for transformation.

PCR products are digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers. Each digested PCR product is inserted into a high copy vector pBlue-script KS plasmid vector [pBlue-script KS plasmid vector, Hypertext Transfer Protocol://World Wide Web (dot) stratagene (dot) com/manuals/212205 (dot) pdf) or pUC19 (New England BioLabs Inc], or into plasmids originated from these vectors. In case of the high copy vector originated from pBlue-script KS plasmid vector (pGXN or pGXNa), the PCR product is inserted in the high copy plasmid upstream to the NOS terminator (SEQ ID NO:8737) originated from pBI 101.3 binary vector (GenBank Accession No. U12640, nucleotides 4356 to 4693) and downstream to the 35S promoter. In other cases (pKSJ_6669a or pUC19_pr6669), the At6669 promoter (SEQ ID NO:8741) is already cloned into the pBlue-script KS or pUC19 respectively, so the gene is introduced downstream of the promoter.

Sequencing of the inserted genes is performed, using the ABI 377 sequencer (Applied Biosystems). In some cases, after confirming the sequences of the cloned genes, the cloned cDNA accompanied/or not with the NOS terminator is introduced into a modified pGI binary vector containing the At6669 promoter via digestion with appropriate restriction endonucleases (the cloned gene replaces the GUI gene). In other cases the cloned cDNA accompanied with the At6669 promoter is introduced into a pGI vector (that does not contain the At6669 promoter). In any case the insert is followed by single copy of the NOS terminator (SEQ ID NO:8737). The digested products and the linearized plasmid vector are ligated using T4 DNA ligase enzyme (Roche, Switzerland).

Several DNA sequences of the selected genes are synthesized by GeneArt [Hypertext Transfer Protocol://World Wide Web (dot) geneart (dot) corn/]. Synthetic DNA is designed in silico. Suitable restriction enzymes sites are added to the cloned sequences at the 5′ end and at the 3′ end to enable later cloning into the desired binary vector.

The pPI plasmid vector is constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, GenBank Accession No. U47295; nucleotides 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, GenBank Accession No. U12640). pGI (FIG. 1) is similar to pPI, but the original gene in the backbone is GUS-Intron and not GUS.

The modified pGI vector (pQFN or pQYN_6669) is a modified version of the pGI vector in which the cassette is inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.

At6669, the Arabidopsis thaliana promoter sequence (SEQ ID NO:8741) is inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above. Colonies are analyzed by PCR using the primers covering the insert which are designed to span the introduced promoter and gene. Positive plasmids are identified, isolated and sequenced.

Selected genes cloned by the present inventors are provided in Table 55-45 below.

TABLE 45
Genes cloned in High copy number plasmids
PolynucleotidePolypeptide
GenePrimers used SEQ IDSEQ IDSEQ ID
NameHigh copy plasmidOrganismNOs:NO:NO:
LAB190pKS (Pks_J)Arabidopsis thaliana Kondara8903, 8904360753
LAB191pGXN (pKG + Nos + 35S)Arabidopsis thaliana Kondara8905, 8905, 8906, 8907361567
LAB53pKS (Pks_J)BARLEY Hordeum vulgare L. ND9148, 9149275474
LAB54Topo BBARLEY Hordeum vulgare L. Manit9150, 9151276732
LAB55pKS (Pks_J)BARLEY Hordeum vulgare L. Manit9152, 9153, 9154, 9155277733
LAB56*278477
LAB197Topo BBARLEY Hordeum vulgare L. Manit8908, 8909362570
LAB121pKS (Pks_J)TOMATO Lycopersicum ND ND8770, 8771, 8772, 8773312516
LAB124pKS (Pks_J)TOMATO Lycopersicum esculentum M828778, 8778, 8779, 8780315740
LAB131pKS (Pks_J)TOMATO Lycopersicum esculentum M828798, 8799322526
LAB58pKS (Pks_J)BARLEY Hordeum vulgare L. Manit9156, 9157, 9158, 9159279478
LAB206pGXN (pKG + Nos + 35S)BARLEY Hordeum vulgare L. Manit8912, 8912, 8913, 8914364754
LAB207pKS (Pks_J)BARLEY Hordeum vulgare L. ND8915, 8916365755
LAB64pGXN (pKG + Nos + 35S)BARLEY Hordeum vulgare L. ND9160, 9161, 9162, 9163220734
LAB210pKS (Pks_J)BARLEY Hordeum vulgare L. Manit8917, 8918, 8919, 8920366756
LAB211*367575
LAB213pGXNaBARLEY Hordeum vulgare L. Manit8925, 8926369758
LAB65pKS (Pks_J)BARLEY Hordeum vulgare L. Manit9164, 9165, 9166, 9167280735
LAB170pGXN (pKG + Nos + 35S)Sorghum bicolor ND8852, 8853, 8854, 8855344549
LAB67Topo BBrachypodiums distachyon ND9168, 9169281481
LAB68pGXN (pKG + Nos + 35S)Brachypodiums distachyon ND9170, 9171, 9172, 9173282482
LAB69pGXN (pKG + Nos + 35S)Brachypodiums distachyon ND9174, 9175, 9176, 9177283483
LAB70pKS (Pks_J)CANOLA Brassica napus ND9178, 9179284484
LAB217Topo BCOTTON Gossypium hirsutum Akala8927, 8928370578
LAB218pKS (Pks_J)COTTON Gossypium hirsutum Akala8929, 8929, 8930, 8931371759
LAB73pKS (Pks_J)GRAPE Vitis vinifera ND (red glob (red) × salt9180, 9181285736
krik)
LAB74pKS (Pks_J)MAIZE Zea mays L. B739182, 9183286488
LAB220*372580
LAB222pKS (Pks_J)MAIZE Zea mays L. OH438935, 8936374761
LAB204pKS (Pks_J)BARLEY Hordeum vulgare L. ND8910, 8911363571
LAB228*376585
LAB229*377586
LAB230pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8939, 8940378587
LAB231Topo BRICE Oryza sativa L. Japonica Nipponbare8941, 8942379588
LAB232pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8943, 8944380589
LAB234*381591
LAB235*382592
LAB236*383593
LAB237*384594
LAB247pGXN (pKG + Nos + 35S)RICE Oryza sativa L. Japonica Nipponbare8957, 8958390600
LAB221pKS (Pks_J)MAIZE Zea mays L. B738932, 8932, 8933, 8934373760
LAB249pKS (Pks_J)RICE Oryza sativa L. Japonica LEMONT8959, 8960391601
LAB147*327532
LAB250Topo BRICE Oryza sativa L. Japonica ND8961, 8962392602
LAB225Topo BRICE Oryza sativa L. Japonica LEMONT8937, 8938375584
LAB252*393603
LAB86pGXNaRICE Oryza sativa L. Japonica ND9194, 9195, 9196, 9197292495
LAB253*394604
LAB254pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8963, 8964395605
LAB255Topo BRICE Oryza sativa L. Japonica ND8965, 8966, 8967, 8968396762
LAB258pKS (Pks_J)RICE Oryza sativa L. Japonica ND8969, 8970397607
LAB259pKS (Pks_J)RICE Oryza sativa L. Japonica ND8971, 8972398608
LAB260*399609
LAB238pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8945, 8946, 8947, 8948385595
LAB262pGXNaRICE Oryza sativa L. Japonica ND8975, 8976401611
LAB263pGXNaRICE Oryza sativa L. Japonica ND8977, 8978402612
LAB264*403613
LAB89Topo BRICE Oryza sativa L. Japonica ND9200, 9201294737
LAB145pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8806, 8807, 8808, 8809326531
LAB265pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8979, 8980404614
LAB240Topo BRICE Oryza sativa L. Japonica Nipponbare8949, 8950386596
LAB261Topo BRICE Oryza sativa L. Japonica ND8973, 8974400610
LAB269pGXN (pKG + Nos + 35S)Sorghum bicolor ND8985, 8985, 8986, 8987407617
LAB167pKS (Pks_J)Sorghum bicolor ND8846, 8847342749
LAB267Topo BSorghum bicolor ND8981, 8982405615
LAB268pGXN (pKG + Nos + 35S)Sorghum bicolor ND8983, 8984406616
LAB270pKS (Pks_J)Sorghum bicolor ND8988, 8989408618
LAB271Topo BSorghum bicolor ND8990, 8991409763
LAB169pKS (Pks_J)Sorghum bicolor ND8848, 8849, 8850, 8851343548
LAB272Topo BSorghum bicolor ND8992, 8993410620
LAB171pKS (Pks_J)Sorghum bicolor ND8856, 8857345550
LAB97pGXN (pKG + Nos + 35S)Sorghum bicolor ND9208, 9209, 9210, 9211230501
LAB274Topo BSorghum bicolor ND8994, 8995411621
LAB98*298502
LAB275Topo BSorghum bicolor ND8996, 8997412622
LAB172pKS (Pks_J)Sorghum bicolor ND8858, 8859346551
LAB276_H0*470687
LAB277pGXN (pKG + Nos + 35S)Sorghum bicolor ND8998, 8999413624
LAB101pGXN (pKG + Nos + 35S)Sorghum bicolor ND8743, 8744299503
LAB278pGXN (pKG + Nos + 35S)Sorghum bicolor ND9000, 9001, 9002, 9003414625
LAB102*300504
LAB279pGXN (pKG + Nos + 35S)Sorghum bicolor ND9004, 9005415626
LAB175pGXNaSorghum bicolor ND8860, 8861, 8862, 8863347553
LAB152pKS (Pks_J)Sorghum bicolor ND8810, 8811328533
LAB153pKS (Pks_J)Sorghum bicolor ND8812, 8813, 8814, 8815329534
LAB154pKS (Pks_J)Sorghum bicolor ND8816, 8817, 8818, 8819330535
LAB280pGXN (pKG + Nos + 35S)Sorghum bicolor ND9006, 9007, 9008, 9009416627
LAB281pGXN (pKG + Nos + 35S)Sorghum bicolor ND9010, 9011417628
LAB282pKS (Pks_J)Sorghum bicolor ND9012, 9013418629
LAB106**Topo BSorghum bicolor Monsanto S58745, 8746301505
LAB283pGXN (pKG + Nos + 35S)Sorghum bicolor ND9014, 9015419630
LAB107Topo BSorghum bicolor ND8747, 8748302506
LAB284pKS (Pks_J)Sorghum bicolor ND9016, 9017420631
LAB286pKS (Pks_J)Sorghum bicolor ND9018, 9019, 9020, 9021421632
LAB109pKS (Pks_J)Sorghum bicolor ND8751, 8752304508
LAB335Topo BWHEAT Triticum aestivum L. ND9104, 9105453667
LAB289pKS (Pks_J)Sorghum bicolor ND9022, 9023, 9024, 9025422633
LAB290_H0*471688
LAB291**TopoBSorghum bicolor ND9026, 9027473
LAB292pGXN (pKG + Nos + 35S)Sorghum bicolor ND9028, 9029423635
LAB293Topo BSorghum bicolor ND9030, 9031254764
LAB294Topo BSorghum bicolor ND9032, 9033424765
LAB166Topo BSorghum bicolor ND8844, 8845341546
LAB156pGXN (pKG + Nos + 35S)Sorghum bicolor ND8820, 8821, 8822331745
LAB295Topo BSorghum bicolor ND9034, 9035425766
LAB157pKS (Pks_J)Sorghum bicolor ND8823, 8824332746
LAB158pKS (Pks_J)Sorghum bicolor ND8825, 8826333747
LAB296pGXN (pKG + Nos + 35S)Sorghum bicolor ND9036, 9037426767
LAB159pKS (Pks_J)Sorghum bicolor ND8827, 8828, 8829, 8830334539
LAB110pGXNaSorghum bicolor ND8753, 8754, 8755, 8756305509
LAB160pKS (Pks_J)Sorghum bicolor ND8831, 8832335540
LAB297pGXN (pKG + Nos + 35S)Sorghum bicolor ND9038, 9039427768
LAB298pGXN (pKG + Nos + 35S)Sorghum bicolor ND9040, 9041, 9042, 9043428769
LAB161pKS (Pks_J)Sorghum bicolor ND8833, 8834336541
LAB299pKS (Pks_J)Sorghum bicolor ND9044, 9045429770
LAB176Topo BSorghum bicolor ND8864, 8865, 8866, 8867348554
LAB300Topo BSorghum bicolor ND9046, 9047, 9048, 9049430771
LAB336pKS (Pks_J)WHEAT Triticum aestivum L. ND9106, 9106, 9107, 9108454668
LAB302pKS (Pks_J)Sorghum bicolor ND9050, 9051431644
LAB303pGXN (pKG + Nos + 35S)Sorghum bicolor ND9052, 9053432645
LAB162pGXN (pKG + Nos + 35S)Sorghum bicolor ND8835, 8836337542
LAB163pKS (Pks_J)Sorghum bicolor ND8837, 8838338543
LAB164pKS (Pks_J)Sorghum bicolor ND8839, 8840339748
LAB177Topo BSorghum bicolor ND8868, 8869, 8870, 8871349555
LAB165pGXN (pKG + Nos + 35S)Sorghum bicolor ND8841, 8842, 8843340545
LAB306**pGXN (pKG + Nos + 35S)SOYBEAN Glycine max 58-2619054, 9055433772
LAB307pKS (Pks_J)SOYBEAN Glycine max 58-2619056, 9057434648
LAB308pKS (Pks_J)SOYBEAN Glycine max 58-2619058, 9059, 9060, 9061435649
LAB309Topo BSOYBEAN Glycine max 58-2619062, 9063436650
LAB310pGXN (pKG + Nos + 35S)SOYBEAN Glycine max 58-2619064, 9065437651
LAB311pGXN (pKG + Nos + 35S)SUNFLOWER Helianthus annuus ND9066, 9067438773
LAB113pKS (Pks_J)TOMATO Lycopersicum esculentum M828757, 8758, 8759, 8760306510
LAB312pKS (Pks_J)TOMATO Lycopersicum esculentum M829068, 9069439653
LAB314pKS (Pks_J)TOMATO Lycopersicum esculentum M829070, 9071440774
LAB315Topo BTOMATO Lycopersicum esculentum M829072, 9073441655
LAB115pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M828761, 8762307511
LAB178pKS (Pks_J)TOMATO Lycopersicum esculentum M828872, 8872, 8873, 8874350556
LAB116*308512
LAB117Topo BTOMATO Lycopersicum esculentum M828763, 8764309513
LAB119Topo BTOMATO Lycopersicum esculentum M828765, 8766, 8767310514
LAB316pKS (Pks_J)TOMATO Lycopersicum esculentum M829074, 9074, 9075, 9076442775
LAB317pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M829077, 9078443776
LAB318pKS (Pks_J)TOMATO Lycopersicum esculentum M829079, 9080, 9081, 9082444777
LAB319pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M829083, 9084, 9085, 9086445659
LAB120pGXNaTOMATO Lycopersicum esculentum M828768, 8769311515
LAB122pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M828774, 8775313517
LAB123Topo BTOMATO Lycopersicum ND ND8776, 8777314739
LAB320pKS (Pks_J)TOMATO Lycopersicum esculentum M829087, 9088, 9089, 9090446660
LAB125pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M828781, 8782316741
LAB126Topo BTOMATO Lycopersicum esculentum M828783, 8784317742
LAB127pKS (Pks_J)TOMATO Lycopersicum esculentum M828785, 8786318522
LAB128pGXN (pKG + Nos + 35S)TOMATO Lycopersicum ND ND8787, 8788, 8789, 8790319523
LAB129pKS (Pks_J)TOMATO Lycopersicum esculentum M828791, 8791, 8792, 8793320524
LAB323pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M829091, 9092, 9093, 9094447661
LAB130Topo BTOMATO Lycopersicum esculentum M828794, 8795, 8796, 8797321525
LAB80pGXN (pKG + Nos + 35S)RICE Oryza sativa L. Japonica Nipponbare9184, 9184, 9185, 9185287490
LAB324pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M829095, 9096448662
LAB133pKS (Pks_J)TOMATO Lycopersicum esculentum M828800, 8801323527
LAB325pKS (Pks_J)TOMATO Lycopersicum esculentum M829097, 9098449663
LAB326pGXN (pKG + Nos + 35S)TOMATO Lycopersicum esculentum M829099, 9100450778
LAB327pKS (Pks_J)TOMATO Lycopersicum esculentum M829101, 9103451665
LAB329*452666
LAB88pGXN (pKG + Nos + 35S)RICE Oryza sativa L. Japonica Nipponbare9198, 9199293496
LAB137pKS (Pks_J)WHEAT Triticum aestivum L. EYAL8802, 8803324743
LAB92pKS (Pks_J)Sorghum bicolor ND9202, 9203295498
LAB138Topo BWHEAT Triticum aestivum L. EYAL8804, 8805325744
LAB93pKS (Pks_J)Sorghum bicolor ND9204, 9205296499
LAB94pKS (Pks_J)Sorghum bicolor ND9206, 9207297500
LAB337pKS (Pks_J)WHEAT Triticum aestivum L. ND9109, 9110, 9111, 9112455669
LAB339pKS (Pks_J)WHEAT Triticum aestivum L. ND9113, 9114456779
LAB179pKS (Pks_J)WHEAT Triticum aestivum L. ND8875, 8875, 8876, 8877351557
LAB342*457672
LAB343pGXNaCANOLA Brassica napus ND9115, 9116458673
LAB344*459674
LAB345pGXN (pKG + Nos + 35S)RICE Oryza sativa L. Japonica LEMONT9117, 9118460675
LAB346pKS (Pks_J)RICE Oryza sativa L. Japonica LEMONT9119, 9120461780
LAB347_H0*472689
LAB348pKS (Pks_J)Sorghum bicolor ND9121, 9122, 9123, 9124205678
LAB349pKS (Pks_J)SOYBEAN Glycine max 58-2619125, 9125, 9126, 9127462679
LAB351*463680
LAB352pKS (Pks_J)WHEAT Triticum aestivum L. EYAL9128, 9129464781
LAB353Topo BWHEAT Triticum aestivum L. ND9130, 9131465682
LAB355pGXN (pKG + Nos + 35S)Brachypodiums distachyon ND9132, 9133, 9134, 9135466683
LAB367Topo BCANOLA Brassica napus ND9136, 9137, 9138, 9139467684
LAB381pGXN (pKG + Nos + 35S)POPLAR Populus ND ND9140, 9141, 9142, 9143468685
LAB383pKS (Pks_J)SOYBEAN Glycine max 58-2619144, 9145, 9146, 9147469782
LAB181pKS (Pks_J)Arabidopsis thaliana Kondara8878, 8879, 8880, 8881352558
LAB182pKS (Pks_J)Arabidopsis thaliana Kondara8882, 8883, 8884, 8885353750
LAB183pKS (Pks_J)Arabidopsis thaliana Kondara8886, 8887, 8888, 8889354560
LAB108Topo BSorghum bicolor ND8749, 8750303738
LAB185Topo BArabidopsis thaliana Kondara8890, 8891355561
LAB186pKS (Pks_J)Arabidopsis thaliana Kondara8892, 8893356562
LAB187pKS (Pks_J)Arabidopsis thaliana Kondara8894, 8895, 8896, 8897357751
LAB188pGXN (pKG + Nos + 35S)Arabidopsis thaliana Kondara8898, 8899, 8900, 8900358564
LAB189Topo BArabidopsis thaliana Kondara8901, 8902359752
LAB81pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare9186, 9187288491
LAB82Topo BRICE Oryza sativa L. Japonica LEMONT9188, 9188, 9189, 9189289492
LAB212pKS (Pks_J)BARLEY Hordeum vulgare L. Manit8921, 8922, 8923, 8924368757
LAB241*387597
LAB242pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8951, 8952, 8953, 8954388598
LAB83pGXNaRICE Oryza sativa L. Japonica ND9190, 9191290493
LAB243pKS (Pks_J)RICE Oryza sativa L. Japonica Nipponbare8955, 8956389599
LAB84Topo BRICE Oryza sativa L. Japonica LEMONT9192, 9193291494
Table 45. “Polyn.”—Polynucleotide; “Polyp.”—polypeptide. For cloning of each gene at least 2 primers were used: Forward (Fwd) or Reverse (Rev). In some cases, 4 primers were used: External forward (EF), External reverse (ER), nested forward (NF) or nested reverse (NR). The sequences of the primers used for cloning the genes are provided in the sequence listing.

Each of the binary vectors described in Example 11 above are used to transform Agrobacterium cells. Two additional binary constructs, having only the At6669 or the 35S promoter or no additional promoter are used as negative controls.

The binary vectors are introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 109 cells/mL) by electroporation. The electroporation is performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells are cultured in LB liquid medium at 28° C. for 3 hours, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28° C. for 48 hours. Abrobacterium colonies, which are developed on the selective media, are further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid. The resulting PCR products are isolated and sequenced to verify that the correct polynucleotide sequences of the invention are properly introduced to the Agrobacterium cells.

Arabidopsis thaliana Columbia plants (T0 plants) are transformed using the Floral Dip procedure described by Clough and Bent, 1998 (Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-43) and by Desfeux et al., 2000 (Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method. Plant Physiol, July 2000, Vol. 123, pp. 895-904), with minor modifications. Briefly, To Plants are sown in 250 ml pots filled with wet peat-based growth mix. The pots are covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hour light/dark cycles. The T0 plants are ready for transformation six days before anthesis.

Single colonies of Agrobacterium carrying the binary constructs, are generated as described in Example 3 above. Colonies are cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures are incubated at 28° C. for 48 hours under vigorous shaking and then centrifuged at 4000 rpm for 5 minutes. The pellets comprising the Agrobacterium cells are re-suspended in a transformation medium containing half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.

Transformation of To plants is performed by inverting each plant into an Agrobacterium suspension, such that the above ground plant tissue is submerged for 3-5 seconds. Each inoculated To plant is immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and is kept in the dark at room temperature for 18 hours, to facilitate infection and transformation. Transformed (transgenic) plants are then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic To plants are grown in the greenhouse for 3-5 weeks until siliques are brown and dry. Seeds are harvested from plants and kept at room temperature until sowing.

For generating T1 and T2 transgenic plants harboring the genes, seeds collected from transgenic To plants are surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds are thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashige-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates are incubated at 4° C. for 48 hours then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants are transferred to a fresh culture plates for another week of incubation. Following incubation the T1 plants are removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants are allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants are cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.

Assay 1: Plant Growth Under Osmotic Stress [Poly (Ethylene Glycol) (PEG)] in Tissue Culture Conditions—

One of the consequences of drought is the induction of osmotic stress in the area surrounding the roots; therefore, in many scientific studies, PEG (e.g., 1.5% PEG) is used to simulate the osmotic stress conditions resembling the high osmolarity found during drought stress.

Surface sterilized seeds are sown in basal media [50% Murashige-Skoog medium (MS) supplemented with 0.8% plant agar as solidifying agent] in the presence of Kanamycin (for selecting only transgenic plants). After sowing, plates are transferred for 2-3 days for stratification at 4° C. and then grown at 25° C. under 12-hour light 12-hour dark daily cycles for 7 to 10 days. At this time point, seedlings randomly chosen are carefully transferred to plates containing 1.5% PEG: 0.5 MS media or Normal growth conditions (0.5 MS media). Each plate contained 5 seedlings of the same transgenic event, and 3-4 different plates (replicates) for each event. For each polynucleotide of the invention at least four independent transformation events are analyzed from each construct. Plants expressing the polynucleotides of the invention are compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.

Digital Imaging—

A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4×150 Watts light bulb) and located in a darkroom, is used for capturing images of plantlets sawn in agar plates.

The image capturing process is repeated every 3-4 days starting at day 1 till day 10 (see for example the images in FIGS. 3A-F).

An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 (Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/). Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Seedling Analysis—

Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.

The relative growth rate for the various seedling parameters was calculated according to the following formulas XVI, XVII and XVIII.
Relative growth rate of leaf area=Regression coefficient of leaf area along time course.  Formula XVI:
Relative growth rate of root coverage=Regression coefficient of root coverage along time course.  Formula XVII:
Relative growth rate of root length=Regression coefficient of root length along time course.  Formula XVIII:

At the end of the experiment, plantlets are removed from the media and weighed for the determination of plant fresh weight. Plantlets are then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical analysis. Growth rate is determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results are used to resolve the effect of the gene introduced on plant vigor, under osmotic stress, as well as under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under osmotic stress as well as under optimal conditions, is determined by comparing the plants' fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events are examined in replicates.

Statistical Analyses—

To identify genes conferring significantly improved tolerance to abiotic stresses or enlarged root architecture, the results obtained from the transgenic plants are compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested are analyzed separately. To evaluate the effect of a gene event over a control the data is analyzed by Student's t-test and the p value is calculated. Results are considered significant if p≤0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).

Experimental Results:

The genes presented in Tables 46-49 showed a significant improvement in plant ABST since they produced larger plant biomass (plant fresh and dry weight and leaf area) in T2 generation (Tables 46-47) or T1 generation (Tables 48-49) when grown under osmotic stress conditions, compared to control plants. The genes were cloned under the regulation of a constitutive promoter (At6669; SEQ ID NO:8741). The evaluation of each gene was carried out by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. The results obtained in these second experiments were significantly positive as well.

TABLE 46
Genes showing improved plant performance under osmotic stress conditions (T2 generation)
Plant Biomass Fresh Weight [gr.]Plant Biomass Dry Weight [gr.]
Gene NameEvent #Ave.p-val.% Incr.Gene NameEvent #Ave.p-val.% Incr.
LAB11527281.20.1460.28347LAB11527281.20.00820.21866
LAB11527282.30.1020.8832LAB11527282.30.00540.51110
LAB11527284.30.1120.13712LAB11527284.30.00610.13823
LAB11527285.20.1640.01165LAB11527285.20.00780.00859
LAB12328282.30.1140.26714LAB12328282.30.00610.04924
LAB12328283.1..LAB12328283.10.00510.8533
LAB12328284.2..LAB12328284.20.00590.12421
LAB12328285.20.1340.00435LAB12328285.20.00690.00440
LAB18327452.20.1200.41920LAB18327452.20.00710.23145
LAB18327453.1..LAB18327453.10.00530.4977
LAB18928163.20.1010.8711LAB18928163.20.00520.6315
LAB18928165.2..LAB18928165.20.00570.43616
LAB21228041.10.1100.61911LAB21228041.10.00620.45326
LAB21228042.10.1380.00139LAB21228042.10.00660.25033
LAB21228043.20.1300.44130LAB21228043.20.00610.50024
LAB21228044.2..LAB21228044.20.00570.29015
LAB21728033.20.1280.40528LAB21728033.20.00890.16482
LAB21728034.10.1180.59618LAB21728034.10.00680.42437
LAB32628053.20.1480.24049LAB32628053.20.00790.14161
LAB32628054.1..LAB32628054.10.00610.15424
LAB32628056.20.1110.38112LAB32628056.20.00540.64510
LAB32628056.30.1080.4818LAB32628056.3..
CONT0.1000CONT0.00490
LAB11527281.3..LAB11527281.30.00580.7897
LAB11527284.30.1420.04738LAB11527284.30.00720.03835
LAB11527285.10.1610.19956LAB11527285.10.00940.22176
LAB12328281.10.3300.002220LAB12328281.10.02120.005296
LAB12328282.30.1450.16940LAB12328282.30.00710.00433
LAB12328283.10.1980.20392LAB12328283.10.01160.132116
LAB12328284.10.1970.00091LAB12328284.10.01220.000128
LAB12328285.20.2090.002103LAB12328285.20.01170.011118
LAB18327453.40.1650.02160LAB18327453.40.00950.06178
LAB18928163.20.1280.28324LAB18928163.2..
LAB18928165.20.1180.60514LAB18928165.2..
LAB18928166.20.1380.37834LAB18928166.20.00720.48934
LAB18928166.50.1210.57717LAB18928166.50.00640.55920
LAB20630011.20.1100.5867LAB20630011.20.00800.01549
LAB20630012.40.1530.01348LAB20630012.40.00750.00240
LAB20630012.70.1290.30825LAB20630012.70.00590.51610
LAB20630012.80.1090.7176LAB20630012.80.00660.15323
LAB21228041.1..LAB21228041.10.00560.6844
LAB21228042.10.1050.9042LAB21228042.1..
LAB21228045.10.1290.07325LAB21228045.10.00670.11726
LAB21728033.20.2160.001110LAB21728033.20.01100.010105
LAB21728034.10.1640.22559LAB21728034.10.00890.09265
LAB21728034.30.1280.05424LAB21728034.30.00660.09924
LAB21728035.10.1990.16993LAB21728035.10.01070.174100
LAB21728036.10.1450.20740LAB21728036.10.00840.13757
LAB25030251.20.1350.19831LAB25030251.20.00760.19941
LAB25030252.10.1170.14614LAB25030252.10.00690.10929
LAB25030254.30.1160.54312LAB25030254.30.00560.7685
LAB31429292.40.1090.7745LAB31429292.4..
LAB31429292.60.1230.02419LAB31429292.60.00700.00731
LAB31429294.10.1170.47114LAB31429294.10.00590.47110
LAB32628052.40.1170.47814LAB32628052.40.00600.37313
LAB32628056.30.1220.12519LAB32628056.30.00610.23414
LAB35130112.10.1280.29724LAB35130112.10.00680.05928
LAB35130115.1..LAB35130115.10.00630.22817
LAB35130115.30.1160.16713LAB35130115.30.00570.6796
LAB9328271.30.1460.15942LAB9328271.30.00790.20847
LAB9328271.40.1300.37527LAB9328271.40.00620.35416
LAB9328272.30.2110.017104LAB9328272.30.01310.020144
LAB9328274.20.1330.16529LAB9328274.20.00790.04047
LAB9328274.30.1210.33518LAB9328274.30.00640.37420
CONT0.1030CONT0.00540
LAB10630031.40.0960.7023LAB10630031.40.00610.06229
LAB10630032.10.1460.08256LAB10630032.10.00770.06064
LAB10630032.20.1410.07251LAB10630032.20.00890.01289
LAB20630011.70.1180.32526LAB20630011.70.00630.12333
LAB20630012.4..LAB20630012.40.00550.41017
LAB20630012.80.1140.33622LAB20630012.80.00590.30624
LAB20728842.10.0990.7296LAB20728842.10.00530.46613
LAB20728842.50.1120.37719LAB20728842.50.00610.31430
LAB20728843.30.1140.37222LAB20728843.30.00760.00961
LAB20728843.50.0990.7375LAB20728843.50.00570.26622
LAB21829432.20.1110.05719LAB21829432.20.00620.11931
LAB21829433.4..LAB21829433.40.00480.8882
LAB21829434.30.1080.65115LAB21829434.30.00660.41640
LAB25030252.10.1040.74311LAB25030252.10.00520.30711
LAB25030253.10.1340.22843LAB25030253.10.00800.13369
LAB25030254.1..LAB25030254.10.00500.7296
LAB25230291.40.1200.19929LAB25230291.40.00670.11943
LAB25230292.30.1930.012106LAB25230292.30.01090.030131
LAB30930052.20.1170.26424LAB30930052.20.00650.21139
LAB30930052.30.1380.14248LAB30930052.30.00840.03078
LAB31429292.40.1180.09926LAB31429292.40.00770.00264
LAB31429292.60.1240.05732LAB31429292.60.00610.19929
LAB31429294.10.1510.01561LAB31429294.10.00810.00273
LAB31429295.20.1410.18351LAB31429295.20.00720.01253
LAB34629442.2..LAB34629442.20.00520.28911
LAB34629442.40.1010.4278LAB34629442.40.00540.33814
LAB34629443.20.1110.56118LAB34629443.20.00600.37127
LAB34629445.30.1390.07348LAB34629445.30.00800.01370
LAB35130111.20.1180.18226LAB35130111.20.00730.00655
LAB35130114.20.1380.01147LAB35130114.20.00790.00068
LAB8230181.30.0950.9641LAB8230181.30.00550.38818
LAB8430161.40.1590.01369LAB8430161.40.00860.01783
LAB8430162.20.1040.67211LAB8430162.20.00710.14251
LAB8430162.40.1720.06184LAB8430162.40.01100.040135
LAB8430163.40.1500.05960LAB8430163.40.00910.03694
LAB8430164.20.1660.09377LAB8430164.20.01090.015132
CONT0.0940CONT0.00470
LAB11030571.30.1350.25137LAB11030571.30.00580.27434
LAB11030572.1..LAB11030572.10.00450.8704
LAB11030573.20.1290.05831LAB11030573.20.00600.11340
LAB11030574.20.1400.11542LAB11030574.20.00690.00561
LAB11727291.10.1090.36111LAB11727291.10.00500.56516
LAB11727291.50.1500.09253LAB11727291.50.00630.29247
LAB11727293.10.2210.034125LAB11727293.10.00860.090100
LAB11727296.10.1350.10937LAB11727296.10.00670.26255
LAB12430431.10.1150.25517LAB12430431.10.00660.09353
LAB12430434.10.1480.17451LAB12430434.10.00590.51036
LAB12430434.30.1490.14052LAB12430434.30.00670.20055
LAB12430435.20.1540.02757LAB12430435.20.00590.04537
LAB12530581.30.1130.15415LAB12530581.30.00530.48624
LAB12530583.10.1100.46912LAB12530583.10.00470.7898
LAB12530583.20.1230.13126LAB12530583.20.00520.33521
LAB15630401.4..LAB15630401.40.00560.44031
LAB15630402.20.1350.03038LAB15630402.20.00710.04366
LAB15630405.30.1120.28514LAB15630405.30.00470.4689
LAB22830081.40.1090.50811LAB22830081.4..
LAB22830082.3..LAB22830082.30.00480.72411
LAB22830084.30.1290.10531LAB22830084.30.00520.45820
LAB27530361.20.1360.07338LAB27530361.2..
LAB27530361.30.1540.12057LAB27530361.30.00740.05073
LAB27530366.40.1100.64212LAB27530366.40.00520.30420
LAB276_H030331.10.1610.03764LAB276_H030331.10.00680.00658
LAB276_H030331.4..LAB276_H030331.40.00450.8234
LAB276_H030333.30.1160.38118LAB276_H030333.30.00490.30514
LAB276_H030333.70.1240.08026LAB276_H030333.70.00510.47419
LAB27730651.20.0990.9471LAB27730651.20.00510.40618
LAB27730652.30.1170.22219LAB27730652.30.00520.22621
LAB27730652.50.1140.15216LAB27730652.50.00530.16023
LAB27730653.10.1340.04436LAB27730653.10.00770.01479
LAB27830411.40.1700.05173LAB27830411.40.00720.15968
LAB27830412.10.1090.64911LAB27830412.1..
LAB27830413.30.1100.41712LAB27830413.30.00460.8167
LAB27830414.1..LAB27830414.10.00480.45412
LAB27830414.20.1430.21046LAB27830414.20.00690.01060
LAB28130741.10.1010.8083LAB28130741.10.00460.8727
LAB28130742.10.1020.7614LAB28130742.10.00430.9960
LAB28130742.40.1140.30416LAB28130742.40.00540.17825
LAB28230751.30.1250.26427LAB28230751.30.00540.55826
CONT0.0980CONT0.00430
LAB11030571.30.1160.62012LAB11030571.30.00580.43116
LAB11030572.10.1120.6947LAB11030572.10.00530.5417
LAB11030572.20.1950.02387LAB11030572.20.01050.000112
LAB11030573.20.1070.8713LAB11030573.20.00600.25520
LAB11030574.20.1570.07051LAB11030574.20.00800.03661
LAB11727291.20.1320.22126LAB11727291.20.00710.05243
LAB11727293.10.1940.01987LAB11727293.10.01180.015136
LAB11727296.10.1410.04336LAB11727296.10.00720.01445
LAB12430432.3..LAB12430432.30.00530.5117
LAB12430434.10.1050.9581LAB12430434.10.00610.23622
LAB12530581.30.1360.28831LAB12530581.30.00620.56424
LAB12530582.2..LAB12530582.20.00550.56811
LAB12530584.20.1750.05368LAB12530584.20.00950.04291
LAB15630401.40.1070.8263LAB15630401.40.00690.01939
LAB15630403.4..LAB15630403.40.00540.3929
LAB15630405.30.1410.15635LAB15630405.30.00690.20738
LAB22830082.30.1690.03462LAB22830082.30.00900.01081
LAB22830084.30.1260.35421LAB22830084.30.00550.46910
LAB22830084.40.1210.30917LAB22830084.4..
LAB27530361.2..LAB27530361.20.00530.6647
LAB27530361.30.1100.8166LAB27530361.3..
LAB27530363.10.1150.52910LAB27530363.10.00620.16124
LAB27530363.40.1050.9561LAB27530363.40.00530.5917
LAB27530366.4..LAB27530366.40.00570.39114
LAB276_H030331.10.1460.35040LAB276_H030331.10.00760.30353
LAB276_H030331.40.1990.00091LAB276_H030331.40.00900.00681
LAB27730652.30.1070.8903LAB27730652.30.00570.31315
LAB27730652.60.1400.06334LAB27730652.60.00750.09351
LAB27730653.1..LAB27730653.10.00530.5916
LAB27830411.40.1080.8354LAB27830411.40.00520.6685
LAB27830413.30.1390.35033LAB27830413.30.00810.08764
LAB27830414.10.1610.01854LAB27830414.10.00890.01680
LAB27830414.20.1150.69911LAB27830414.2..
LAB28130742.4..LAB28130742.40.00540.6748
LAB28230752.20.1140.6989LAB28230752.2..
LAB28230753.40.1080.7814LAB28230753.40.00670.02234
CONT0.1040CONT0.00500
LAB10630031.40.1250.40918LAB10630031.40.00710.36322
LAB10630032.10.1130.7596LAB10630032.10.00720.13324
LAB10630034.10.1310.42624LAB10630034.10.00710.50722
LAB10630035.20.1200.54613LAB10630035.20.00730.33225
LAB12730811.4..LAB12730811.40.00590.9701
LAB12730814.20.1160.7089LAB12730814.2..
LAB12828074.10.1210.51014LAB12828074.10.00610.8085
LAB12828074.30.1250.19817LAB12828074.30.00670.22015
LAB12828075.20.1420.03233LAB12828075.20.00800.01837
LAB20728842.1..LAB20728842.10.00610.8155
LAB20728842.50.1080.9371LAB20728842.50.00670.47414
LAB20728845.10.1140.2897LAB20728845.1..
LAB21829431.30.1090.8603LAB21829431.30.00610.8774
LAB21829432.20.1100.8134LAB21829432.20.00630.7668
LAB21829434.30.1260.13319LAB21829434.30.00720.21823
LAB25230291.10.1160.7459LAB25230291.1..
LAB25230292.30.1690.14459LAB25230292.30.00970.16766
LAB25230292.40.1280.37120LAB25230292.40.00750.34128
LAB30930052.2..LAB30930052.20.00610.8204
LAB30930052.30.1320.28124LAB30930052.30.00770.16432
LAB30930054.20.1660.01756LAB30930054.20.00900.02554
LAB30930056.1..LAB30930056.10.00630.5428
LAB33727265.20.1300.20422LAB33727265.20.00690.30217
LAB34629442.20.1460.18738LAB34629442.20.00810.11438
LAB34629443.20.1130.7576LAB34629443.20.00590.9541
LAB34629445.60.1360.04628LAB34629445.60.00790.04236
LAB8030671.20.1080.9072LAB8030671.2..
LAB8030673.20.1400.08932LAB8030673.20.00810.04639
LAB8030675.20.1400.02032LAB8030675.20.00640.2179
LAB8030675.50.1150.6228LAB8030675.50.00600.8862
LAB8430162.40.1230.54615LAB8430162.40.00670.48315
LAB8430164.20.1380.25730LAB8430164.20.00720.46423
CONT0.1060CONT0.00580
LAB12730811.40.1570.6149LAB12730811.4..
LAB12730812.10.1560.3509LAB12730812.10.00790.8274
LAB12730813.20.1510.8355LAB12730813.2..
LAB12828071.20.1590.79011LAB12828071.2..
LAB12828075.20.1440.9571LAB12828075.2..
LAB14731104.1..LAB14731104.10.00800.7406
LAB14731104.20.1890.08632LAB14731104.2..
LAB14731105.60.1520.7356LAB14731105.60.00780.8443
LAB14731105.70.1550.7768LAB14731105.7..
LAB18631001.40.2710.08389LAB18631001.40.01440.08491
LAB18631002.10.2260.14158LAB18631002.10.01220.08361
LAB18631004.10.1740.09821LAB18631004.10.00840.65211
LAB18631004.20.1640.32815LAB18631004.2..
LAB19731083.10.1940.25435LAB19731083.1..
LAB19731084.30.2220.11755LAB19731084.30.01070.01441
LAB19731085.30.1620.54613LAB19731085.30.00810.7397
LAB31531061.10.1560.6899LAB31531061.10.00780.8783
LAB31531061.20.1540.6217LAB31531061.2..
LAB31531063.10.1610.56113LAB31531063.10.00780.9042
LAB31730951.40.1590.28111LAB31730951.40.00770.9031
LAB31730953.10.1450.9361LAB31730953.1..
LAB32430961.10.1500.8655LAB32430961.1..
LAB32530971.40.1550.4318LAB32530971.40.00780.8353
LAB32530972.20.2380.12666LAB32530972.20.01330.07575
LAB32530973.10.2070.28544LAB32530973.10.01070.20941
LAB32530975.10.1550.3998LAB32530975.10.00900.16619
LAB32530975.40.1990.40639LAB32530975.40.01040.42938
LAB6731021.40.1470.7873LAB6731021.4..
LAB6731022.10.2190.02453LAB6731022.10.01210.00060
LAB6731023.30.1450.9491LAB6731023.30.00830.6609
LAB8030671.20.1600.74412LAB8030671.2..
CONT0.1430CONT0.00760
LAB14731103.20.1450.051135LAB14731103.20.00660.09485
LAB14731104.10.0940.03752LAB14731104.10.00580.00163
LAB14731104.20.0980.01158LAB14731104.20.00580.08363
LAB14731105.60.1190.00392LAB14731105.60.00710.004100
LAB14731105.70.0850.14538LAB14731105.70.00610.00171
LAB17830631.20.0760.25923LAB17830631.20.00420.41420
LAB17830632.10.1240.145100LAB17830632.10.00670.09890
LAB17830633.30.1150.00686LAB17830633.30.00620.00276
LAB17830633.40.1400.004127LAB17830633.40.00810.012130
LAB17830635.10.0770.25324LAB17830635.10.00460.08329
LAB18631001.40.1130.05284LAB18631001.40.00630.05478
LAB18631002.10.0950.06454LAB18631002.10.00570.01961
LAB18631003.10.1560.001153LAB18631003.10.00910.000156
LAB18631004.10.1120.02882LAB18631004.10.00570.03861
LAB18631004.20.1110.11980LAB18631004.20.00540.10654
LAB19731081.30.0800.04530LAB19731081.30.00490.07838
LAB19731083.10.0640.8584LAB19731083.1..
LAB19731084.30.0810.17032LAB19731084.30.00480.12035
LAB19731084.40.1030.01467LAB19731084.40.00540.00152
LAB19731085.30.0890.08243LAB19731085.30.00460.18630
LAB24728091.40.1080.03975LAB24728091.40.00540.02452
LAB24728093.20.0890.25545LAB24728093.20.00510.10544
LAB24728094.10.0810.01831LAB24728094.10.00470.00734
LAB24728094.30.0980.00659LAB24728094.30.00550.00054
LAB24728095.40.0700.50913LAB24728095.4..
LAB31429292.4..LAB31429292.40.00400.54112
LAB31429292.60.0820.03633LAB31429292.60.00450.16828
LAB31429294.10.0720.45516LAB31429294.10.00390.61210
LAB31429294.20.0830.00735LAB31429294.20.00380.5396
LAB31429295.10.0830.13434LAB31429295.10.00450.42527
LAB31531061.10.0670.3429LAB31531061.1..
LAB31531061.20.1420.000130LAB31531061.20.00840.000136
LAB31531063.10.1100.05178LAB31531063.10.00650.05383
LAB31531064.30.1120.03081LAB31531064.30.00600.00168
LAB31531065.40.0860.11840LAB31531065.40.00420.11020
LAB31730952.20.1250.016102LAB31730952.20.00730.010106
LAB31730952.30.1240.001101LAB31730952.30.00710.000102
LAB31730953.10.1090.13176LAB31730953.10.00610.04873
LAB31730953.40.0730.07519LAB31730953.40.00430.13220
LAB31730954.40.1130.00684LAB31730954.40.00670.05189
LAB32430961.10.1330.011115LAB32430961.10.00720.010104
LAB32430962.20.1170.12090LAB32430962.20.00460.17031
LAB32430963.10.1040.10668LAB32430963.10.00640.06980
LAB32430965.20.1010.07064LAB32430965.20.00540.01153
LAB32430965.30.0920.01348LAB32430965.30.00560.01059
LAB32530971.40.1200.00194LAB32530971.40.00780.000119
LAB32530972.20.1190.00192LAB32530972.20.00640.09881
LAB32530973.10.0940.30352LAB32530973.10.00500.31140
LAB32530975.20.1070.08174LAB32530975.20.00580.09165
LAB32530975.40.1150.01086LAB32530975.40.00600.05170
LAB5428133.10.0750.11921LAB5428133.10.00390.42310
LAB5428133.40.2220.000260LAB5428133.40.01250.000253
LAB5428134.10.1060.00072LAB5428134.10.00620.00576
LAB5428136.10.0820.12533LAB5428136.10.00410.15716
LAB5428136.20.1460.067137LAB5428136.20.00950.073167
LAB6731021.40.0710.29316LAB6731021.40.00420.19519
LAB6731022.10.1450.007136LAB6731022.10.01000.002183
LAB6731022.60.0830.01134LAB6731022.60.00610.00273
LAB6731023.30.1300.043110LAB6731023.30.00680.01691
LAB6731023.40.0720.14016LAB6731023.40.00440.04025
LAB6829331.50.0700.43113LAB6829331.50.00450.15327
LAB6829335.10.0750.64421LAB6829335.10.00360.9192
LAB6829335.3..LAB6829335.30.00380.4868
LAB7330151.10.0670.4348LAB7330151.10.00360.8352
LAB7330152.10.0940.05053LAB7330152.10.00530.02450
LAB7330152.20.0930.18850LAB7330152.20.00590.12666
LAB7330153.10.0960.05755LAB7330153.10.00500.07842
LAB7330154.30.0670.3678LAB7330154.30.00400.28913
LAB7428451.30.1370.080123LAB7428451.30.00790.156122
LAB7428452.10.0890.18144LAB7428452.10.00420.15017
LAB7428452.20.1250.003103LAB7428452.20.00790.002123
LAB7428453.50.0960.23555LAB7428453.5..
LAB7428454.10.1260.016105LAB7428454.10.00700.00799
CONT0.0620CONT0.00350
LAB13328833.20.1380.20636LAB13328833.20.00510.03960
LAB13328833.50.1070.7205LAB13328833.50.00420.11131
LAB15829412.10.1310.23030LAB15829412.10.00410.11728
LAB15829414.30.1030.9202LAB15829414.30.00370.22916
LAB15829415.10.1070.7885LAB15829415.10.00520.00363
LAB16029312.10.1070.7085LAB16029312.10.00440.10538
LAB16029314.20.1090.7777LAB16029314.20.00360.73712
LAB16029315.2..LAB16029315.20.00410.28228
LAB16029315.30.1080.6937LAB16029315.30.00380.47218
LAB16229341.2..LAB16229341.20.00390.14023
LAB16229342.60.1080.6237LAB16229342.60.00390.27421
LAB16229344.1..LAB16229344.10.00540.00668
LAB17729422.10.1190.39417LAB17729422.10.00540.08071
LAB17729424.30.1460.13944LAB17729424.30.00620.03893
LAB17729424.4..LAB17729424.40.00340.6228
LAB17729425.10.1030.9501LAB17729425.10.00400.08825
LAB17929301.40.1470.43745LAB17929301.40.00450.06542
LAB17929302.4..LAB17929302.40.00380.29819
LAB17929303.20.1760.00174LAB17929303.20.00880.001177
LAB17929304.3..LAB17929304.30.00330.8804
LAB17929304.40.1450.17843LAB17929304.40.00800.055150
LAB18528172.4..LAB18528172.40.00370.32417
LAB18528174.20.1080.6407LAB18528174.20.00380.58419
LAB18528175.2..LAB18528175.20.00400.20826
LAB18528175.30.1120.65611LAB18528175.30.00540.04668
LAB21028331.3..LAB21028331.30.00420.20531
LAB21028333.20.1120.65111LAB21028333.2..
LAB21028335.30.2000.01998LAB21028335.30.00890.056179
LAB25428811.10.1140.52112LAB25428811.10.00340.6138
LAB25428814.1..LAB25428814.10.00460.03943
LAB25428814.50.1190.49617LAB25428814.50.00610.01990
LAB25428815.30.1370.16336LAB25428815.30.00570.04278
LAB25428815.40.1450.01743LAB25428815.40.00500.09157
LAB29329232.20.1180.26116LAB29329232.20.00470.19348
LAB29329233.20.1270.25125LAB29329233.20.00420.03433
LAB29329233.30.1210.21519LAB29329233.30.00430.03534
LAB29329233.4..LAB29329233.40.00390.28421
LAB29329235.4..LAB29329235.40.00340.8106
LAB29729272.1..LAB29729272.10.00360.49312
LAB29729272.5..LAB29729272.50.00380.50719
LAB29729273.10.1390.23537LAB29729273.10.00630.06697
LAB29729273.40.1280.53226LAB29729273.40.00380.35519
LAB29729275.10.1960.00693LAB29729275.10.00800.045151
LAB31028181.30.1020.9930LAB31028181.30.00350.6009
LAB31028182.2..LAB31028182.20.00390.17122
LAB31028183.3..LAB31028183.30.00430.23434
LAB31828101.5..LAB31828101.50.00420.25433
LAB31828101.70.1520.09550LAB31828101.70.00600.11888
LAB31828104.3..LAB31828104.30.00420.21131
LAB32729221.20.1340.21332LAB32729221.20.00410.52528
LAB32729221.5..LAB32729221.50.00370.23016
LAB32729221.60.1060.7514LAB32729221.60.00400.34524
LAB32729221.80.1230.41221LAB32729221.80.00600.07689
LAB32729225.40.1060.7994LAB32729225.4..
LAB33527311.2..LAB33527311.20.00390.60221
LAB33527314.1..LAB33527314.10.00360.44012
LAB33527314.20.1570.17055LAB33527314.20.00710.014122
LAB33527315.40.1140.69013LAB33527315.40.00400.42525
CONT0.1010CONT0.00320
LAB10230312.20.1120.43927LAB10230312.20.00720.14676
LAB10230312.40.1020.42516LAB10230312.40.00610.07751
LAB10230313.20.1110.00425LAB10230313.20.00560.08037
LAB10230313.30.1140.35630LAB10230313.30.00660.15261
LAB10230314.30.0930.4955LAB10230314.30.00420.7914
LAB12630201.30.1320.08850LAB12630201.30.00740.08982
LAB12630202.30.1360.05655LAB12630202.30.00680.01867
LAB12630203.30.1590.02080LAB12630203.30.01060.019160
LAB12630205.10.1590.01980LAB12630205.10.00950.022134
LAB12630205.30.1320.00550LAB12630205.30.00760.00086
LAB16530231.10.1480.22468LAB16530231.10.00780.14691
LAB16530232.10.1080.33622LAB16530232.10.00630.01556
LAB16530233.10.1660.00989LAB16530233.10.01010.016147
LAB16530235.10.0960.3629LAB16530235.10.00530.15830
LAB16727321.30.1070.57121LAB16727321.30.00450.72711
LAB16727321.40.1390.01958LAB16727321.40.00950.000133
LAB16727321.60.0980.44911LAB16727321.60.00640.01257
LAB16727324.10.1200.18536LAB16727324.10.00630.05355
LAB22030321.40.1950.001121LAB22030321.40.01150.004182
LAB22030322.3..LAB22030322.30.00410.9521
LAB22030323.10.1020.10815LAB22030323.10.00480.22818
LAB22030324.40.1470.15767LAB22030324.40.00800.05097
LAB24130212.2..LAB24130212.20.00560.08738
LAB24130213.10.1120.39327LAB24130213.10.00670.10064
LAB26830392.20.1970.023123LAB26830392.20.01000.003145
LAB26830395.10.1640.01286LAB26830395.10.00910.000124
LAB28030041.10.1990.021126LAB28030041.10.01160.007185
LAB28030044.10.2090.033137LAB28030044.10.01140.030180
LAB28030045.10.0890.9670LAB28030045.10.00480.47617
LAB28030045.30.1260.09642LAB28030045.30.00760.04286
LAB28930371.20.0940.7077LAB28930371.20.00510.36226
LAB28930371.40.1180.08334LAB28930371.40.00600.15147
LAB28930371.60.1250.02242LAB28930371.60.00820.000102
LAB28930375.20.2690.004205LAB28930375.20.01570.002287
LAB28930375.30.1490.03269LAB28930375.30.00910.017124
LAB30330423.40.0960.5449LAB30330423.40.00590.14845
LAB30330424.30.1210.01537LAB30330424.30.00690.00269
LAB30330425.30.1660.10788LAB30330425.30.00740.00681
CONT0.0880CONT0.00410
LAB30330421.2..LAB30330421.20.00390.57310
LAB30330421.30.0730.9421LAB30330421.30.00390.46110
LAB30330423.40.1200.00565LAB30330423.40.00570.08360
LAB30330425.30.0820.25513LAB30330425.30.00430.15321
LAB31130221.40.0830.19814LAB31130221.40.00480.00936
LAB31130222.20.0880.29821LAB31130222.20.00510.05443
LAB31130223.40.1380.00089LAB31130223.40.00700.00699
LAB31130224.20.0840.51915LAB31130224.20.00500.25041
LAB34430092.30.1230.00970LAB34430092.30.00740.000110
LAB34430093.30.1360.34387LAB34430093.30.00650.23984
LAB34430096.1..LAB34430096.10.00370.7535
LAB34430096.30.1120.21754LAB34430096.30.00700.13898
LAB35529281.30.1910.038163LAB35529281.30.01020.066187
LAB35529282.10.0740.8502LAB35529282.10.00470.20534
LAB35529282.20.1840.082153LAB35529282.20.00970.077174
LAB35529282.30.0990.01836LAB35529282.30.00490.00838
LAB35529283.10.0820.46813LAB35529283.10.00500.04542
LAB36730171.30.1190.08364LAB36730171.30.00860.010143
LAB36730172.3..LAB36730172.30.00360.9402
LAB36730173.10.0840.56816LAB36730173.10.00460.19231
LAB36730173.30.1070.26748LAB36730173.30.00590.19866
LAB36730174.10.0970.40633LAB36730174.10.00450.32228
LAB38130351.40.1180.05663LAB38130351.40.00710.072101
LAB38130352.20.1700.008134LAB38130352.20.00910.017158
LAB38130352.40.1100.21352LAB38130352.40.00630.04477
LAB38130354.20.1350.06786LAB38130354.20.00580.00065
LAB38130356.10.1020.00141LAB38130356.10.00650.00185
LAB38328111.1..LAB38328111.10.00420.38619
LAB38328111.30.1720.052136LAB38328111.30.00860.049142
LAB38328111.40.1310.20881LAB38328111.40.00770.166116
LAB38328115.20.1140.13756LAB38328115.20.00570.07362
LAB6430271.20.1850.065154LAB6430271.20.00890.027152
LAB6430272.10.1230.00670LAB6430272.10.00680.03292
LAB6430273.20.1810.056149LAB6430273.20.01040.025194
LAB6430274.2..LAB6430274.20.00400.28714
LAB6430274.30.0890.31322LAB6430274.30.00440.38424
LAB6530302.10.1290.03977LAB6530302.10.00700.03397
LAB6530304.3..LAB6530304.30.00430.17120
LAB9229321.20.1130.11255LAB9229321.20.00670.01389
LAB9229322.10.1100.00552LAB9229322.10.00670.00489
LAB9229323.20.1080.00049LAB9229323.20.00520.07848
LAB9229324.20.1180.08162LAB9229324.20.00730.076106
LAB9229325.1..LAB9229325.10.00380.8156
CONT0.0730CONT0.00350
LAB17230852.30.1010.42635LAB17230852.30.00510.19837
LAB17230852.40.0880.24717LAB17230852.40.00480.05229
LAB17230853.40.1430.24691LAB17230853.40.00730.20496
LAB17230854.10.0910.19422LAB17230854.10.00520.14339
LAB17230854.40.1050.02239LAB17230854.40.00630.00368
LAB18830722.20.1300.11673LAB18830722.20.00760.059105
LAB18830723.30.1100.25047LAB18830723.30.00560.12149
LAB18830724.1..LAB18830724.10.00390.6135
LAB18830724.20.0840.75412LAB18830724.20.00390.8934
LAB24327101.10.1040.01638LAB24327101.10.00590.00158
LAB24330872.10.1390.10585LAB24330872.10.00710.09292
LAB24330873.20.1300.08174LAB24330873.20.00620.16068
LAB24330873.40.1920.008157LAB24330873.40.01070.014188
LAB27030591.20.1030.12038LAB27030591.20.00640.03372
LAB27030595.10.1030.17437LAB27030595.10.00510.22837
LAB27030595.20.0910.28022LAB27030595.20.00560.02052
LAB29131851.20.1280.09671LAB29131851.20.00710.02291
LAB29131851.3